• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Augmented reality may assist cardiologists plan and perform complex procedures

Bioengineer by Bioengineer
October 24, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Augmented reality (AR), a technology that superimposes computer-generated information on a user's view of the real world, offers a new platform to help physicians better visualize complex medical data, particularly before and during medical procedures. A new self-contained AR device aims to provide an immersive AR experience in which surgeons can interactively explore data in three dimensions.

Jihye Jang, a PhD Candidate at the Cardiac Magnetic Resonance (MR) Center at Beth Israel Deaconess Medical Center (BIDMC), and colleagues assessed AR's potential to help cardiologists visualize myocardial scarring in the heart as they perform ventricular tachycardia ablation or other electrophysiological interventions. Myocardial scarring can occur in people who experience a heart attack and also stems from the surgical repair of congenital heart disease. The team's findings, published in PLOS ONE, demonstrate that the new augmented reality technology confers a number of advantages.

"Augmented reality allows physicians to superimpose images, such as MRI or CT scans, as a guide during therapeutic intervention," said Jang. "Our report shows exciting potential that having this complex 3D scar information through augmented reality during the intervention may help guide treatment and ultimately improve patient care. Physicians can now use AR to view 3D cardiac MR information with a touchless interaction in sterile environment."

By projecting three dimensional imagery onto a glass screen worn like a diving mask on the surgeon's face, AR provides 3D depth perception and allows surgeons to interact with the medical data without physically touching a screen or computer mouse, maintaining a sterile environment and reducing the risk of infection. In Jang and colleague's pilot study, the researchers applied the augmented reality technique as they generated holographic 3D scar in five animal models that underwent controlled infarction and electrophysiological study.

3D holographic visualization of the scar was performed to assist assessment of the complex 3D scar architecture. An operator and mapping specialist viewed the holographic 3D scar during electrophysiological study, and completed the perceived usefulness questionnaire in the six-item usefulness scale and found it useful to have scar information during the intervention. The user could interactively explore 3D myocardial scar in the augmented reality environment that allows for the combination of holographic 3D LGE data interacting with any real-world environments, such as a surgical suite or patient's body.

"Our report is one of the first efforts to test augmented reality in cardiovascular electrophysiological intervention," said Jang. "Our next steps will expand the use of AR into treatments for arrhythmia by merging the scar information with electrophysiology data."

###

The senior corresponding author of the paper is Reza Nezafat, PhD, scientific director of the Cardiac Magnetic Resonance Center at BIDMC. Other co-authors include colleagues from BIDMC, University of Pennsylvania and Technical University of Munich.

This work was supported by the National Institutes of Health [1R01HL129185, 1R21HL127650]; and the American Heart Association [15EIA22710040]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

About Beth Israel Deaconess Medical Center

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks as a national leader among independent hospitals in National Institutes of Health funding.

BIDMC is in the community with Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, MetroWest Medical Center, Signature Healthcare, Beth Israel Deaconess HealthCare, Community Care Alliance and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Rehabilitation Center and is a research partner of Dana-Farber/Harvard Cancer Center and the Jackson Laboratory. BIDMC is the official hospital of the Boston Red Sox. For more information, visit http://www.bidmc.org.

Media Contact

Lindsey Diaz-MacInnis
[email protected]
617-667-7372
@BIDMCNews

http://www.bidmc.harvard.edu

https://www.bidmc.org/about-bidmc/news/2018/10/augmented-reality-may-assist-cardiologists-plan-and-perform-complex-procedures

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0205188

Share12Tweet7Share2ShareShareShare1

Related Posts

STING Agonists Induce Monocyte Death Through Multiple Pathways

October 31, 2025
Bayesian Sequential Palpation Enhances Bimodal Tactile Tomography for Intracavitary Microstructure Profiling and Segmentation

Bayesian Sequential Palpation Enhances Bimodal Tactile Tomography for Intracavitary Microstructure Profiling and Segmentation

October 31, 2025

Early Body Composition in Very Preterm Infants Fed High-Volume Human Milk

October 31, 2025

Optimizing Harm Reduction in Quebec Youth Cannabis Use

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

IEEE Study Highlights Groundbreaking Photonics Innovations of 2024

STING Agonists Induce Monocyte Death Through Multiple Pathways

Concentration-Controlled Doping Converts P-Type Polymer into Its N-Type Equivalent

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.