• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Auditory perception: Where microseconds matter

Bioengineer by Bioengineer
June 1, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the mammalian auditory system, sound waves impinging on the tympanic membrane of the ear are transduced into electrical signals by sensory hair cells and transmitted via the auditory nerve to the brainstem. The spatial localization of sound sources, especially low-frequency sounds, presents the neuronal processing system with a daunting challenge, for it depends on resolving the difference between the arrival times of the acoustic stimulus at the two ears. The ear that is closer to the source receives the signal before the contralateral ear. But since this interval — referred to as the interaural timing difference (ITD) — is on the order of a few microseconds, its neuronal processing requires exceptional temporal precision. Members of the research group led by LMU neurobiologists Professor Benedikt Grothe and Dr. Michael Pecka have now uncovered a specific combination of mechanisms, which plays a crucial role in ensuring that auditory neurons can measure ITDs with the required accuracy. Their findings appear in the journal PNAS.

Before cells in the auditory brainstem can determine the ITD, the signals from both ears must first be transmitted to them via chemical synapses that connect them with the sensory neurons. Depending on the signal intensity, synapses themselves can introduce varying degrees of delay in signal transmission. The LMU team, however, has identified a pathway in which the synapses involved respond with a minimal and constant delay." Indeed, the duration of the delay remains constant even when rates of activation are altered, and that is vital for the precise processing of interaural timing differences," Benedikt Grothe explains.

In addition, Grothe and his colleagues demonstrate that a particular structural feature of the wrapping of the signal-transmitting fibers ("axons") by discontinuous membrane sheaths, which they first described in the journal Nature Communications in 2015, correlates with the constancy of synaptic delay in the pathway. In that study, they had found that these axons are particularly thick and that their wrapping exhibits a highly unusual pattern to enable rapid signal transmission – which is an important prerequisite for accurate measurement of minimal timing differences. Both of these features are found in mammals such as gerbils, which use ITDs for the localization of low-frequency sounds, but not in mice, which only hear high frequencies and don't use ITDs. "Our work underlines the fact that nerve cells and neuronal circuits are anatomically and physiologically adapted for the specific nature of their biological function," says Dr. Michael Pecka. "We assume that all mammals that are capable of perceiving low-frequency sounds make use of these structural adaptations."

###

Media Contact

Dr. Kathrin Bilgeri
[email protected]

http://www.uni-muenchen.de

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Gene Analysis Uncovers Metal Exposure in Synechococcus

Gene Analysis Uncovers Metal Exposure in Synechococcus

September 22, 2025
Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

September 22, 2025

“‘Youth Molecule’ Shows Promise in Enhancing Quality of Life for Older Adults, Clinical Studies Reveal”

September 22, 2025

Ancient Defense Meets Modern Science: How Conifers Protect Themselves From Predators

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Federal Health Surveys Are Measuring Sexual Orientation, Gender Identity, and Differences in Sex Development

Gene Analysis Uncovers Metal Exposure in Synechococcus

New CHART Guideline Outlines 12 Essential Reporting Items for AI Chatbot Health Advice Studies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.