• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, June 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Auditory brainstem implant

Bioengineer by Bioengineer
February 14, 2015
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A multi-institutional team of hearing and communication experts led by the Keck School of Medicine of the University of Southern California (USC) is breaking sound barriers for children born without a hearing nerve in a clinical trial backed by the National Institutes of Health (NIH). Launched in March 2014, the three-year study has enrolled five of 10 participants and successfully implanted an auditory brainstem implant (ABI) device in four children who previously could not hear.

ear

The research team will present preliminary findings at the American Association for the Advancement of Sciences (AAAS) 2015 Annual Meeting in San Jose, California, on Feb. 14.

“Initial activation of the ABI is like a newborn entering the world and hearing for the first time, which means these children will need time to learn to interpret what they are sensing through the device as ‘sound,’” said audiologist Laurie Eisenberg, Ph.D., a Keck School of Medicine of USC otolaryngology professor and study co-leader. “All of our study participants whose ABIs have been activated are progressing at expected or better rates. We are optimistic that, with intensive training and family support, these children will eventually be able to talk on the phone.”

Hearing loss manifests in various forms, most of which can be partially restored through hearing aids and cochlear implants. Those devices cannot help a small population of individuals who do not have a cochlear, or hearing, nerve — these people are unable to perceive sound, no matter how loud, outside of feeling vibration. The ABI is considered revolutionary because it stimulates neurons directly at the human brainstem, bypassing the inner ear entirely.

Surgeons outside the United States have been doing ABI surgeries in children for more than 10 years, but there was never a formal safety or feasibility study under regulatory oversight. In the United States, the ABI is approved for use only in patients 12 years or older with neurofibromatosis type II, an inherited disease that causes a non-malignant brain tumor on the hearing nerve, but it has shown limited effectiveness in adults.

Scientists believe that the ABI would be more effective in younger children, when their brains are more adaptable. The clinical trial will attempt to prove that the surgery is safe in young children and allow researchers to study how the brain develops over time and how it learns to hear sound and develop speech.

“Hearing loss can be devastating to a child’s social development, and for some children, the ABI is their last viable chance to hear,” said Keck School of Medicine of USC Professor Robert V. Shannon, Ph.D., an investigator for the trial and a leading scientist in the development of ABI technology since 1989. “Several of the young children who had ABIs implanted outside the United States have sought help at the USC-CHLA Center for Childhood Communication and we know that they now have the potential to understand speech. This really shows how powerful and flexible the brain is. By studying how the brain and the hearing system work together through this device, our team will set the gold standard for use of this technology.”

The NIH clinical trial grant U01DC013031 covers the costs of the device, procedure and subsequent testing. To qualify for participation, patients aged 2 to 5 years old must show that standard treatment such as hearing aids and cochlear implants have been ineffective.

Story Source:

The above story is based on materials provided by University of Southern California – Health Sciences, Alison Trinidad.

Share13Tweet8Share2ShareShareShare2

Related Posts

Neocarzilin A Triggers ER Stress to Induce Apoptosis

Neocarzilin A Triggers ER Stress to Induce Apoptosis

June 16, 2025
blank

Global Warming Could Boost Obstructive Sleep Apnea

June 16, 2025

Nerve Fiber Changes in Parkinson’s and Atypical Parkinsonism

June 15, 2025

Perivascular Fluid Diffusivity Predicts Early Parkinson’s Decline

June 14, 2025
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    159 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    70 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Machine Learning Advances Enable Diagnostic Testing Beyond the Lab

Rethinking Male Risk in Bronchopulmonary Dysplasia

New Technique Breaks Fluorescence Microscopy Resolution Barrier

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.