• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Attacking tumors from the inside

Bioengineer by Bioengineer
September 3, 2020
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two experimental drugs fight non-small cell lung cancer by affecting their blood vessels, oxygen levels, and other environmental factors

IMAGE

Credit: UT Southwestern Medical Center

DALLAS – Sept. 3, 2020 – A new technology that allows researchers to peer inside malignant tumors shows that two experimental drugs can normalize aberrant blood vessels, oxygenation, and other aspects of the tumor microenvironment in non-small cell lung cancer (NSCLC), helping to suppress the tumor’s growth and spread, UT Southwestern researchers report.

The findings, published online in Cancer Research, highlight the use of this novel visualization tool as well as the promise of these drugs for NSCLC, a disease that remains one of the leading causes of cancer-related deaths in the U.S. despite decades of research.

NSCLC is the most common form of lung cancer, comprising about 85-90 percent of the nearly 230,000 cases of lung cancer diagnosed each year in the U.S. However, despite state-of-the-art treatments for this disease, including targeted therapies and immunotherapies, the five-year survival rate for lung cancer remains at only 10-20 percent – far lower than for many other cancers including breast (90 percent) and prostate (99 percent.)

The experimental drugs cyclopamine tartrate (CycT) and heme-sequestering peptide 2 (HSP2) have shown promise in inhibiting cancer growth and progression in mice bearing human NSCLC tumors. Although it’s known that both of the drugs target heme, the molecule that carries oxygen in red blood cells – CycT inhibits heme synthesis and HSP2 inhibits heme uptake into cells – how these therapies work to suppress NSCLC was unknown.

To answer that question, Li Liu, Ph.D., assistant professor of radiology at UTSW, and her colleagues used a new tool called multispectral optoacoustic tomography (MSOT) to examine the inside of human NSCLC tumors growing in mice. (The imaging technology uses light pulses to generate ultrasound waves.) They looked specifically at tumor blood vessels and how well they carried oxygen to the cells within, comparing tumors in animals that received injections of either CycT, HSP2, or saline every three days.

After three weeks, tests showed that either drug significantly suppressed the growth of the tumors compared with mice that received just saline, supporting previous studies. But Liu, a member of the Harold C. Simmons Comprehensive Cancer Center, and her colleagues showed that while untreated tumors consumed copious amounts of oxygen, lowering this blood gas in the tumor microenvironment, tumors in mice treated with CycT or HSP2 consumed significantly less. Similarly, these animals generated less ATP, a molecule that cells use for energy that requires heme for its formation.

Using MSOT, they found that treatment with either drug reduced the abnormally large amount of blood vessel formation in these tumors and increased blood oxygen saturation and tumor oxygenation, bringing both of these measures closer to that of healthy tissue. The treatments also reduced the amount of total hemoglobin, a measure that reflects the amount of blood circulating through tumor tissue.

Further experiments showed that cells isolated from the tumors of mice treated with CycT and HSP2 had reduced amounts of molecular markers for low oxygen and molecules associated with blood vessel formation.

Together, Liu says, these findings suggest that these two heme-targeting medications can attack NSCLC tumors from multiple angles: inhibiting the production of ATP and the oxygen consumption they need to live and grow, reducing blood circulation and oxygen levels to that of healthy tissue, and decreasing the tumors’ ability to create new blood vessels. This study also shows the utility of MSOT as a noninvasive tool to survey tumors and track how well drugs such as CycT and HSP2 are working in real time.

“The more we learn about these deadly tumors and potential new treatments,” says Liu, “the more hope we can offer patients, who currently have few effective options for therapy.”

###

Clinical trials are underway at other institutions to explore the feasibility of using MSOT to evaluate tumors in patients, she added.

Other UTSW researchers who participated in this study were Yihang Guo, Jingyu Chen, Shigen Zhong, James Campbell, Jeni Gerberich, and Ralph P. Mason. Other contributors from local or international institutions or companies included Poorva Ghosh, Adnin Ashrafi, Sachareeka Dey, Jie Liu, Purna Chaitanya Konduri, Li Zhang, and Massoud Garrossian.

This study was funded by Cancer Prevention and Research Institute of Texas grants RP160617 and RP200021 and infrastructure provided by the Southwestern Small Animal Imaging Research Program (SW-SAIRP) supported in part by P30 CA142543 and Shared Instrumentation Grants 1S10 RR024757, S10 OD018094-01A1.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution’s faculty has received six Nobel Prizes, and includes 23 members of the National Academy of Sciences, 16 members of the National Academy of Medicine, and 13 Howard Hughes Medical Institute Investigators. The full-time faculty of more than 2,500 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide care in about 80 specialties to more than 105,000 hospitalized patients, nearly 370,000 emergency room cases, and oversee approximately 3 million outpatient visits a year.

Media Contact
UT Southwestern Medical Center
[email protected]

Tags: Medicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Hidden Threats: How “Forever Chemicals” PFAS Endanger Global Farmlands

September 23, 2025

Pharmacists: Key Players in Substance Use Disorder Treatment

September 23, 2025

How Federal Health Surveys Are Measuring Sexual Orientation, Gender Identity, and Differences in Sex Development

September 22, 2025

New CHART Guideline Outlines 12 Essential Reporting Items for AI Chatbot Health Advice Studies

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Neuro-Imaging in cCMV Infection

Sustainable Thermal Insulation: Bio-Based Nanocellulose Aerogels Enhance Fire Safety

Electrodynamics at Photonic Temporal Interfaces Unveiled

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.