• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Atmospheric drying will lead to lower crop yields, shorter trees across the globe

Bioengineer by Bioengineer
March 8, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Maria H Park

A global observation of an ongoing atmospheric drying — known by scientists as a rise in vapor pressure deficit — has been observed worldwide since the early 2000s. In recent years, this concerning phenomenon has been on the rise, and is predicted to amplify even more in the coming decades as climate change intensifies.

In a new paper published in the journal Global Change Biology, research from the University of Minnesota and Western University in Ontario, Canada, outlines global atmospheric drying significantly reduces productivity of both crops and non-crop plants, even under well-watered conditions. The new findings were established on a large-scale analysis covering 50 years of research and 112 plant species.

“When there is a high vapor pressure deficit, our atmosphere pulls water from other sources: animals, plants, etc.,” said senior author Walid Sadok, an assistant professor in the Department of Agronomy and Plant Genetics at the University of Minnesota. “An increase in vapor pressure deficit places greater demand on the crop to use more water. In turn, this puts more pressure on farmers to ensure this demand for water is met — either via precipitation or irrigation –so that yields do not decrease.”

“We believe a climate change-driven increase in atmospheric drying will reduce plant productivity and crop yields — both in Minnesota and globally,” said Sadok.

In their analysis, researchers suspected plants would sense and respond to this phenomenon in unexpected ways, generating additional costs on productivity. Findings bear out that various plant species — from wheat, corn, and even birch trees — take cues from atmospheric drying and anticipate future drought events.

Through this process, plants reprogram themselves to become more conservative — or in other words: grow smaller, shorter and more resistant to drought, even if the drought itself does not happen. Additionally, due to this conservative behavior, plants are less able to fix atmospheric CO2 to perform photosynthesis and produce seeds. The net result? Productivity decreases.

“As we race to increase production to feed a bigger population, this is a new hurdle that will need to be cleared,” said Sadok. “Atmospheric drying could limit yields, even in regions where irrigation or soil moisture is not limiting, such as Minnesota.”

On a positive note, the analysis indicates different species or varieties within species respond more or less strongly to this drying depending on their evolutionary and genetic make-up. For example, in wheat, some varieties are less responsive to this new stress compared to others, and this type of variability seems to exist within other non-crop species as well.

“This finding is particularly promising as it points to the possibility of breeding for genotypes with an ability to stay productive despite the increase in atmospheric drying,” said Sadok.

Danielle Way, a plant physiologist and co-author of the study from Western University, sees similar outcomes when it comes to ecosystems.

“Variation in plants’ sensitivity to atmospheric drying could also be leveraged to predict how natural ecosystems will respond to climate change and manage them in ways that increase their resilience to climate change,” she said.

In the future, researchers believe these findings can be used to design new crop varieties and manage ecosystems in ways that make them more resilient to atmospheric drying. However, new collaborations are needed between plant physiologists, ecologists, agronomists, breeders and farmers to make sure the right kind of variety is released to farmers depending on their specific conditions.

“Ultimately, this investigation calls for more focused interdisciplinary research efforts to better understand, predict and mitigate the complex effects of atmospheric drying on ecosystems and food security,” Sadok and Way said.

The research was funded by grants from the Minnesota Wheat Research & Promotion Council, the Minnesota Soybean Research and Promotion Council and the Minnesota Department of Agriculture.

###

Media Contact
Patrick Stumpf
[email protected]

Original Source

https://onlinelibrary.wiley.com/doi/10.1111/gcb.15548

Tags: Agricultural Production/EconomicsAgricultureAtmospheric ChemistryClimate ChangeClimate ScienceEnvironmental HealthForestryPlant SciencesTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Iberian Horse Genomes Trace Post-Ice Age History

August 2, 2025
Predicting Lung Infections After Brain Hemorrhage

Predicting Lung Infections After Brain Hemorrhage

August 2, 2025

Impact of Morphology and Location on Aneurysms

August 2, 2025

Unraveling EMT’s Role in Colorectal Cancer Spread

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    41 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Iberian Horse Genomes Trace Post-Ice Age History

Predicting Lung Infections After Brain Hemorrhage

Impact of Morphology and Location on Aneurysms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.