• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Asthma research unexpectedly yields new treatment approach for inherited enzyme disease

Bioengineer.org by Bioengineer.org
January 31, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of EBioMedicine

Experiments designed to reveal how a protein protects the lungs from asthma-related damage suggest a new way to treat a rare disease marked by the inability of cells to break down fats, according to a report in EBioMedicine published online Oct. 25.

The study results address Gaucher's disease, which is caused by a genetic glitch in cell structures called lysosomes that process fats and remove cellular waste. Found mostly in Jews of Eastern and Central European origin, the condition may come with joint pain, blood disorders, enlarged spleens and livers, memory loss, and lung damage.

At a cellular level, Gaucher's disease is associated with abnormally low production of the protein progranulin, as well as with the misplaced buildup of the enzyme beta-glucocerebrosidase, or GBA, outside lysosomes, instead of inside where it is needed.

Led by researchers from NYU Langone Medical Center, the new study found that a manufactured version of progranulin reversed most effects of Gaucher's disease in mouse and human cell studies, including GBA accumulation.

"Our results suggest a new way to treat Gaucher's disease that corrects abnormal enzyme delivery by progranulin to lysosomes, as opposed to current treatment strategies that temporarily replenish lysosomal GBA stores, which are then steadily consumed," says senior study investigator Chuanju Liu, PhD, a professor in the Departments of Orthopaedic Surgery and Cell Biology at NYU Langone. The research team and NYU Langone hold a patent on related, potential therapies.

Among the study's other key findings was that progranulin must bind to other molecules to transport the enzyme to lysosomes, specifically the protective "heat shock" protein 70. If unshielded, cellular GBA molecules fold up and stick together outside lysosomes.

Researchers also found that adding synthetic progranulin, or Pcgin, to blood cells obtained from patients with Gaucher's, led to a 40 percent reduction in GBA clumping within a week. Pcgin was used because it is chemically more stable than progranulin and poses no risk of uncontrolled tumor-like cell growth in test animals, say the authors.

"Our new experiments are the first to explain why reduced progranulin is a key characteristic of Gaucher's, and why the mice engineered to lack the protein serve as such a good model to test new therapies," says lead study investigator Jian Jinlong, MD, PhD, an associate research scientist at NYU Langone.

Along with their role in brain disorders, progranulin shortages had been tied by previous research to cell swelling in asthmatic lungs. In the current set of experiments in progranulin-deficient mice, adding Pcgin reduced lung-tissue swelling by as much as 60 percent, an effect seen with current GBA-replacement treatments.

According to Liu, further research is needed to determine the precise mechanism by which progranulin reduces cell swelling, a process that would likely yield even more drug targets for Gaucher's disease.

Experts estimate that as many as one in 50,000 Americans has some form of Gaucher's, while one in 500 Jews of Ashkenazi descent has the disease.

###

Funding support for the study was provided by National Institute of Health grants R01 AR062207, and R01 AR 061484, and a grant from Atreaon Inc. of Newton, Mass., with which NYU Langone has a drug-licensing agreement.

Besides Liu and Jian, other NYU Langone researchers involved in these experiments are Qing-Yun Tian, MD; Aubryanna Hettinghouse, BS; Shuai Zhao, MS; Helen Liu; Jianlu Wei, MD, PhD; and Gabriele Grunig. Additional research support was provided by Ying Sun, MD, PhD, at Cincinnati Children's Hospital Medical Center in Ohio; Herman Overkleeft, PhD, at Leiden University in Germany; and Gerald Chan, PhD, at Harvard University in Boston.

Media Inquiries:

David March
212-404-3528
[email protected]

Media Contact

David March
[email protected]
212-404-3528
@NYULMC

http://nyulangone.org/

Share12Tweet7Share2ShareShareShare1

Related Posts

Link Between Weight Bias and Adolescent Eating Disorders

September 30, 2025

GM-CSF-Driven CD301b+ Lung DCs Promote Allergen Tolerance

September 30, 2025

Immune Cell ‘Signatures’ May Pave the Way for Personalized Treatment in Critically Ill Patients

September 30, 2025

Structural Brain Changes in Children Associated with Societal Inequality

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    59 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Link Between Weight Bias and Adolescent Eating Disorders

GM-CSF-Driven CD301b+ Lung DCs Promote Allergen Tolerance

Immune Cell ‘Signatures’ May Pave the Way for Personalized Treatment in Critically Ill Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.