• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Artificial muscles, tendons would make prosthetic limbs more lifelike

Bioengineer by Bioengineer
September 28, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Houston

An engineer from the University of Houston has received a $500,000 CAREER award from the National Science Foundation to develop artificial muscle and tendons for dexterous, compliant and affordable prostheses.

Zheng Chen, Bill D. Cook Assistant Professor of mechanical engineering, said the resulting prosthetics would be more comfortable and work more efficiently than current models, which involve motorized metallic parts.

Chen, director of the Bio-inspired Robotics and Controls Lab at the UH Cullen College of Engineering, works with smart materials to devise improved prostheses. These smart materials – Chen works with dielectric elastomers – have built-in actuation and sensing capabilities, allowing them to more closely mimic human muscles.

The project involves bio-inspired design, fabricating the device and developing a mechanism to control movement of prosthetic hands, using a material which can be activated by an electrical voltage.

Chen and his colleagues have developed a prototype of artificial muscle and tendon structure. "It achieves some performance, but we need to improve the performance," he said. "It is an integrated sensor and actuator, so the person can sense objects, grasp and participate in other activities."

He will use nanotechnology to push the material to achieve the necessary performance; it then will be used to construct artificial muscle and tendons.

NSF CAREER awards are granted to promising junior faculty members who exemplify the role of teacher-scholars, and recipients also do educational outreach to promote a better understanding of science and technology. In addition to his research, Chen will work with graduate and undergraduate students to train next-generation engineers to work with modeling and fabrication of devices using smart materials and structures.

Chen said he will develop a graduate-level class involving smart materials and structure. His lab also will provide an environment for undergraduate students working on senior design projects, he said.

###

Media Contact

Jeannie Kever
[email protected]
713-743-0778
@UH_News

http://www.uh.edu/news-events

Original Source

http://www.uh.edu/news-events/stories/2017/SEPTEMBER%2017/09282017Chen-Artificial-Muscle.php

Share12Tweet7Share2ShareShareShare1

Related Posts

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025
blank

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

UGA Ecologists Discover Two New Bass Species

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Formula Use and NEC Risk in Preterm Infants

Linking Stigma and Diabetes Control in Adults

Designing Dual Inhibitors: Tricyclic Compounds Target AChE/MAO-B

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.