• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Artificial intelligence to run the chemical factories of the future

Bioengineer by Bioengineer
November 13, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by L. Brian Stauffer


CHAMPAIGN, Ill. — A new proof-of-concept study details how an automated system driven by artificial intelligence can design, build, test and learn complex biochemical pathways to efficiently produce lycopene, a red pigment found in tomatoes and commonly used as a food coloring, opening the door to a wide range of biosynthetic applications, researchers report.

The results of the study, which combined a fully automated robotic platform called the Illinois Biological Foundry for Advanced Biomanufacturing with AI to achieve biomanufacturing, are published in the journal Nature Communications.

“Biofoundries are factories that mimic the foundries that build semiconductors, but are designed for biological systems instead of electrical systems,” said Huimin Zhao, a University of Illinois chemical and biomolecular engineering professor who led the research.

However, because biology offers many pathways to chemical production, the researchers assert that a system driven by AI and capable of choosing from thousands of experimental iterations is required for true automation.

Previous biofoundry efforts have produced a wide variety of products such as chemicals, fuels, and engineered cells and proteins, the researchers said, but those studies were not performed in a fully automated manner.

“Past studies in biofoundry development mainly focused on only one of the design, build, test and learn elements,” Zhao said. “A researcher was still required to perform data analysis and to plan for the next experiment. Our system, dubbed BioAutomata, closes the design, build, test and learn loop and leaves humans out of the process.”

BioAutomata completed two rounds of fully automated construction and optimization of the lycopene-production pathway, which includes the design and construction of the lycopene pathways, transfer of the DNA-encoding pathways into host cells, growth of the cells, and extraction and measurement of the lycopene production.

“BioAutomata was able to reduce the number of possible lycopene-production pathways constructed from over 10,000 down to about 100 and create an optimized quantity of lycopene-overproducing cells within weeks – greatly reducing time and cost,” Zhao said.

Zhao envisions fully automated biofoundries being a future revolution in smart manufacturing, not unlike what automation did for the automobile industry.

“A hundred years ago, people built cars by hand,” he said. “Now, that process is much more economical and efficient thanks to automation, and we imagine the same for biomanufacturing of chemicals and materials.”

###

Zhao also is affiliated with the departments of chemistry, biochemistry and bioengineering, and is a theme leader at the Carl R. Woese Institute for Genomic Biology and at the Center for Advanced Bioenergy and Bioproducts Innovation at the U. of I.

The U.S. Department of Energy’s Center for Advanced Bioenergy and Bioproducts Innovation and the IGB supported this research.

Editor’s notes:

To reach Huimin Zhao, call 217-333-2631; email [email protected].

The paper “Towards a fully automated algorithm driven platform for biosystems design” is available online and from the U. of I. News Bureau. DOI: 10.1038/s41467-019-13189-z

Media Contact
Lois Yoksoulian
[email protected]
217-244-2788

Original Source

https://news.illinois.edu/view/6367/804371

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-13189-z

Tags: BiochemistryBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyComputer ScienceNutrition/NutrientsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Climate impacts of biochar and hydrochar differ in boreal grasslands

October 27, 2025
Cracking the Code of ‘Sticky’ Chemistry: A Path to Cleaner, More Efficient Fuels

Cracking the Code of ‘Sticky’ Chemistry: A Path to Cleaner, More Efficient Fuels

October 27, 2025

Exploring the Role of Water-Soluble Polymers in Wastewater Treatment

October 27, 2025

Dynamic Acoustic Mimicry through Parity Metamaterials

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CAP’s Role in Osteosarcoma’s Temperature Regulation Revealed

Darbepoetin-alpha Regulates Apelin and Galectin-3 in Insulin Resistance

Darbepoetin-alpha Regulates Apelin and Galectin-3 in Insulin Resistance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.