• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Artificial intelligence may help scientists make spray-on solar cells

Bioengineer by Bioengineer
December 16, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UCF, Karen Norum

Artificial Intelligence may be just the thing to accelerate spray-on solar cell technology, which could revolutionize how consumers use energy.

A research team at the University of Central Florida used Machine Learning, aka Artificial Intelligence to optimize the materials used to make perovskite solar cells (PSC). The Organic-Inorganic halide perovskites material used in PSC converts photovoltaic power into consumable energy.

These perovskites can be processed in solid or liquid state, offering a lot of flexibility. Imagine being able to spray or paint bridges, houses and skyscrapers with the material, which would then capture light, turn it into energy and feed it into the electrical grid. Until now, the solar cell industry has relied on silicon because of its efficiency. But that’s old technology with limits. Using perovskites, however, has one big barrier. They are difficult to make in a usable and stable material. Scientists spend a lot of time trying to find just the right recipe to make them with all the benefits – flexibility, stability, efficiency and low cost. That’s where artificial intelligence comes in.

The team’s work is so promising that its findings are the cover story Dec. 13 in the Advanced Energy Materials journal.

The team reviewed more than 2,000 peer-reviewed publications about perovskites and collected more than 300 data points then fed into the AI system they created. The system was able to analyze the information and predict which perovskites recipe would work best.

“Our results demonstrate that machine learning tools can be used for crafting perovskite materials and investigating the physics behind developing highly efficient PSCs,” says Jayan Thomas, the study’s lead author and an associate professor at the NanoScience Technology Center with multiple affiliations. “This can be a guide to design new materials as evidenced by our experimental demonstration.”

If this model bears out, it means researchers could identify the best formula to create a world standard. Then spray-on solar cells may happen in our lifetime, the researchers say.

“This is a promising finding because we use data from real experiments to predict and obtain a similar trend from the theoretical calculation, which is new for PSCs. We also predicted the best recipe to make PSC with different bandgap perovskites,” says Thomas and his graduate student, Jinxin Li, who is the first author of this paper. “Perovskites have been a hot research topic for the past 10 years, but we think we really have something here that can move us forward.”

###

Others on the research team include: Basudev Pradhan from the NanoScience Technology Center and Surya Gaur from the College of Engineering and Computer Science. Pradhan is currently a faculty member at Centre of Excellence in Green and Efficient Energy Technology, at the Central University of Jharkhand in India

Thomas joined UCF in 2011 and is a part of the NanoScience Technology Center with a joint appointment in the College of Optics and Photonics and the Department of Materials Science and Engineering in the College of Engineering. His previous work resulted in a variety of innovations, including material that could help keep pilots and sensitive equipment safe from destructive lasers, a way to both transmit and store electricity in a lightweight copper wire, and filaments that harvest and store the sun’s energy and can be woven into textiles.

Previously, Thomas was at the University of Arizona in its College of Optical Sciences. He has several degrees including a doctorate in chemistry/materials science from Cochin University of Science and Technology in India. He’s published dozens of studies and earned several grants and awards including a National Science Foundation CAREER Grant and an R&D 100 award.

Media Contact
Zenaida Gonzalez Kotala
[email protected]
407-823-6120

Related Journal Article

http://dx.doi.org/10.1002/aenm.201970181

Tags: Energy/Fuel (non-petroleum)Nanotechnology/MicromachinesOpticsSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

September 5, 2025
Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

September 5, 2025

Physicists Develop Visible Time Crystal for the First Time

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

EA5181 Phase 3 Trial Shows No Overall Survival Advantage for Concurrent Plus Consolidative Durvalumab Over Consolidation Alone in Unresectable Stage 3 NSCLC

Closed-Loop Recycling of Mixed Polyesters via Catalysis

New Pathway Fuels Cancer Cells with Acetyl-CoA

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.