• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Artificial intelligence identifies optimal material formula

Bioengineer by Bioengineer
March 26, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Material research

IMAGE

Credit: © Lars Banko


Porous or dense, columns or fibres

During the manufacture of thin films, numerous control variables determine the condition of the surface and, consequently, its properties. Relevant factors include the composition of the layer as well as process conditions during its formation, such as temperature. All these elements put together result in the creation of either a porous or a dense layer during the coating process, with atoms combining to form columns or fibres. “In order to find the optimal parameters for an application, it used to be necessary to conduct countless experiments under different conditions and with different compositions; this is an incredibly complex process,” explains Professor Alfred Ludwig, Head of the Materials Discovery and Interfaces Team.

Findings yielded by such experiments are so-called structure zone diagrams, from which the surface of a certain composition resulting from certain process parameters can be read. “Experienced researchers can subsequently use such a diagram to identify the most suitable location for an application and derive the parameters necessary for producing the suitable layer,” points out Ludwig. “The entire process requires an enormous effort and is highly time consuming.”

Algorithm predicts surface

Striving to find a shortcut towards the optimal material, the team took advantage of artificial intelligence, more precisely machine learning. To this end, PhD researcher Lars Banko, together with colleagues from the Interdisciplinary Centre for Advanced Materials Simulation at RUB, Icams for short, modified a so-called generative model. He then trained this algorithm to generate images of the surface of a thoroughly researched model layer of aluminium, chromium and nitrogen using specific process parameters, in order to predict what the layer would look like under the respective conditions.

“We fed the algorithm with a sufficient amount of experimental data in order to train it, but not with all known data,” stresses Lars Banko. Thus, the researchers were able to compare the results of the calculations with those of the experiments and analyse how reliable its prediction was. The results were conclusive: “We combined five parameters and were able to look in five directions simultaneously using the algorithm – without having to conduct any experiments at all,” outlines Alfred Ludwig. “We have thus shown that machine learning methods can be transferred to materials research and can help to develop new materials for specific purposes.”

###

Funding

The research was funded by the German Research Foundation under the umbrella of Collaborative Research Centre/Transregio 87 “Pulsed high power plasmas for the synthesis of nanostructural functional layers”, subproject C2.

Original publication

Lars Banko, Yury Lysogorskiy, Dario Grochla, Dennis Naujoks, Ralf Drautz, Alfred Ludwig: Predicting structure zone diagrams for thin film synthesis by generative machine learning, in: Communications Materials, 2020, DOI: 10.1038/s43246-020-0017-2

Press contact

Prof. Dr. Alfred Ludwig

Materials Discovery and Interfaces

Institute for Materials

Department of Mechanical Engineering

Ruhr-Universität Bochum

Germany

Email: [email protected]

Media Contact
Prof. Dr. Alfred Ludwig
[email protected]

Original Source

https://news.rub.de/english/press-releases/2020-03-26-material-research-artificial-intelligence-identifies-optimal-material-formula

Related Journal Article

http://dx.doi.org/10.1038/s43246-020-0017-2

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

August 27, 2025
blank

Widespread Metal, Extraordinary Potential Unveiled

August 27, 2025

Electrons Unveil Their Handedness in Attosecond Flashes

August 27, 2025

Decoding Electrolytes and Interface Chemistry to Advance Sustainable Nonaqueous Metal–CO2 Batteries

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Developing Iliac Wing Fracture Risk Curve for Women

Unraveling Hypospadias: Genetics and Development Insights

Liquiritigenin Boosts Oocyte Quality in Aging Mice

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.