• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Artificial intelligence enables smart control and fair sharing of resources in energy communities

Bioengineer by Bioengineer
September 6, 2025
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Energy communities will play a key role in building the more decentralised, less carbon intensive, and fairer energy systems of the future. Such communities enable local prosumers (consumers with own generation and storage) to generate, store and trade energy with each other — using locally owned assets, such as wind turbines, rooftop solar panels and batteries. In turn, this enables the community to use more locally generated renewable generation, and shifts the market power from large utility companies to individual prosumers.

Energy community projects often involve jointly-owned assets such as community-owned wind turbines or shared battery storage. Yet, this raises the question of how these assets should be controlled – often in real time, and how the energy outputs jointly-owned assets should be shared fairly among community members, given not all members have the same size, energy needs or demand profiles.

It turns out that we can use Artificial Intelligence not only to use more renewable energy and protect the lifetime of expensive assets (such as batteries), but also to devise fairer ways to divide joint gains.

A paper recently published in Applied Energy: doi.org/10.1016/j.apenergy.2021.116575 by researchers from the Smart Systems Group (SSG) at Heriot-Watt University in Edinburgh, Scotland (UK), has shown that tools from distributed AI (specifically multi-agent systems) and cooperative game theory can be efficiently used to answer these questions.

Their work develops new algorithms for smart control of community energy assets (such as local wind turbines and batteries), both to use more locally generated electricity, and to extend the lifetime of energy assets. They compare the case when individual households invest in their own home battery vs. investing in a larger community energy storage unit, and show the benefits of a pooled storage approach. Next, they propose several practically applicable and computationally efficient mechanism to share the outputs of these assets between homes in a fair way. Their works makes use of the key concept of marginal value – borrowed from coalitional game theory and distributed AI, looking at what each member contributes to (and costs) the local community.

The authors were motivated in their work by real case studies from communities in the Responsive Flexibility (ReFLEX) project – the UK’s largest smart energy demonstration project running on Orkney Islands in Scotland. In ongoing work, they also aim to explore the use of their methods for energy communities in India, in the framework of the CEDRI project (Community Energy Demand Reduction in India), a project led by researchers Heriot-Watt University in Scotland and the Indian Institute of Technology (IIT) in New Delhi, India.

Dr. Valentin Robu, Co-Director of the Smart Systems Group added: “This work, led by our PhD student Sonam Norbu, who joined us from Bhutan 3 years ago, demonstrates an excellent mix of top-level scientific impact and practical contribution. The contribution of the Responsive Flexibility project on Orkney Islands, one of the largest smart energy demonstration and “living lab” projects in the UK. I was delighted that Sonam’s work was recently recognised by a nomination for the Young Professional Green Energy Academic Award, awarded yearly by Scottish Renewables, to top industry body for the renewable energy industry in Scotland.”

###

Media Contact
Susan Kerr
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.apenergy.2021.116575

Tags: Climate ChangeEnergy SourcesEnergy/Fuel (non-petroleum)Robotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Electrode Material on Radish Germination

Impact of Electrode Material on Radish Germination

September 14, 2025
blank

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

September 14, 2025

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

Estimating Rice Canopy LAI Non-Destructively Across Varieties

September 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.