• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Artificial ‘inclusion bodies’ created for controlled drug release

Bioengineer by Bioengineer
December 19, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Author: CIBER-BBN , UAB, IR Sant Pau


Precision medicine is becoming increasingly important, achieving to create more efficient personalised therapies for each patient and innovative pharmacological developments. In the oncology field, for example, researchers are developing different approaches aimed at directed and controlled drug release systems, thereby diminishing toxicity to the organism.

In this sense, researchers at the CIBER’s Bioengineering, Biomaterials and Nanomedicine sector (CIBER-BBN), the Institute of Biotechnology and Biomedicine of the Universitat Autònoma de Barcelona (IBB-UAB) and the Hospital Sant Pau Research Institute have developed a new type of protein biomaterial capable of a sustained release of therapeutic proteins administered subcutaneously in lab animals.

“These structures, measuring a few micrometres in diameter, contain functional proteins that are released similarly to how human hormones are released by the endocrine system”, states Antonio Villaverde, researcher at the UAB and the CIBER-BBN and one of the study’s coordinators.

The study is the result of a stable scientific collaboration between Antonio Villaverde’s group and the group led by Ramon Mangues at the Hospital Sant Pau Research Institute. It also included the involvement of the Institute for Biological and Technological Research of the National University of Cordoba-CONICET in Argentina.

Dr Mangues, also researcher at the CIBER-BBN and co-author of the paper, explains that “the new biomaterial imitates a bacterial product commonly found in biotechnological processes known as ‘inclusion bodies’, pharmacologically of interest, which in this artificial version offer a wide array of therapeutic possibilities for the oncological field and any other clinical sector in which a sustained release is needed”.

Researchers used as models the enzymes common to biotechnology and a nanostructured bacterial toxin directed to human colorectal cancer metastatic cells, which have been tested on animal models. “In this way, we achieved to generate as many immovable catalysts as a new anti-tumour drug with prolonged action”, the leading authors of the study explain.

Enormous Clinical Potencial

The artificial protein granules developed, which had previously been proposed as “nanopills” (therapeutic pills at nanoscopic scale), imitate the action of bacterial inclusion bodies and have enormous clinical potential for vaccines and controlled-release drug delivery systems.

“We have seen that natural inclusion bodies, administered as drugs, can produce undesired immune system responses due to the inevitable contamination of the bacterial materials”, researchers say. However, in this new study, the development of artificial inclusion bodies with secreton capacity “prevents many of the regulatory problems associated with the potential development of bacterial ‘nanopills’, and offers a transverse platform through which to obtain functional components for cosmetical and clinical uses”, they add.

This study suggests that artificial inclusion bodies can become a new category of exploitable biomaterials to be used in biotechnological applications, due to the facility with which they are manufactured and the foresight of future clinical applications.

###

Media Contact
Octavi López Coronado
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/advs.201902420

Tags: Medicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

SMFM Releases Updated Guidelines for Diagnosing and Managing Heart Failure in Pregnancy and Postpartum

October 3, 2025

New Study Reveals One-Year CT Scan Changes Predict Future Outcomes in Fibrotic Lung Disease

October 3, 2025

Assessing Infection Risk via Stochastic Microexposure Models

October 3, 2025

Guhong Injection: Real-World Safety Study of 30,000

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    66 shares
    Share 26 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SMFM Releases Updated Guidelines for Diagnosing and Managing Heart Failure in Pregnancy and Postpartum

Scientists Uncover New Intracellular Trafficking Pathway in Plant Cells

New Molecular Coating Enhances Clarity of Quantum Light

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.