• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Areas of glioblastoma tumors correlate with separate subtypes of glioma stem cells

Bioengineer by Bioengineer
October 10, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CLEVELAND — A new study published in the Oct. 9 issue of the journal Nature Medicine demonstrates, for the first time, that glioblastoma (GBM), the most common and most lethal brain tumor, is driven by two distinct subsets of cancer stem cells. Moreover, each subtype of glioma stem cells is driven by distinct transcriptional programs for growth and treatment resistance, and these different cell populations correspond to well-known morphological differences within the GBM itself.

More importantly, the researchers found that while chemotherapeutic agents targeting each subtype achieve modest efficacy alone, they are synergistic when combined as demonstrated in a mouse model.

Senior co-author of the study, Andrew Sloan, MD, Medical Director, Brain Tumor and Neuro-Oncology Center at University Hospitals Cleveland Medical Center, observed that GBMs typically have two radiologically distinct regions on MRI: The enhancing mass and the necrotic core.

He noted, "We hypothesized that the different parts of the tumor might respond differently to treatment. Our findings are consistent with this hypothesis."

Even the best surgeons can only remove the entire tumor about 75 percent of the time, according to Dr. Sloan. Therefore, it is essential to learn more about the mechanisms for tumor growth and how the chemo agents can inhibit the pathways for growth.

Dr. Sloan said, "The enhancing edge and the invading tumor are driven by glioma stem cells (GSCs) dependent on the EZH2 pathway. They are driven by stem cells with the proneural pattern of gene expression and depend on rapid cell division and angiogenesis–creation of new blood vessels.

"Conversely, the necrotic part of the tumor is driven by a distinct set of glioma stem cells utilizing the BIM1 pathway and are characterized by a mesenchymal, inflammatory cell type dependent on glucose metabolism in the absence of oxygen.

"Inhibition of the EZH2 pathway slows growth of tumors in mouse brain derived from glioma stem cells from the enhancing margin of human tumors. Conversely, BIM1 inhibitors inhibit growth of mouse brain tumors derived from human glioma stem cells derived from the necrotic core of brain tumors in mice

Dr. Sloan said that since a single tumor may contain different pools of glioma stem cells, combined targeting should be considered for the pathways and stem cells.

The paper is entitled, "Targeting glioma stem cells through combined BMI1 and EZH2 inhibition."

Dr. Sloan is holds the Peter D. Cristal Chair in Neurosurgical Oncology and is Professor and Vice Chair, Department of Neurological Surgery at UH Cleveland Medical Center. He is also part of the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine.

Co-senior author is Jeremy Rich of the Division of Regenerative Medicine at the University of San Diego, and formerly at the Case Comprehensive Cancer Center. Lead author is Xun Jin of the Cleveland Clinic, Tianjin Medical University Cancer Institute and Hospital and the First Affiliated Hospital of Wenzhou Medical University, P.R. China.

###

About University Hospitals / Cleveland, Ohio

Founded in 1866, University Hospitals serves the needs of patients through an integrated network of 18 hospitals, more than 40 outpatient health centers and 200 physician offices in 15 counties throughout northern Ohio. The system's flagship academic medical center, University Hospitals Cleveland Medical Center, located on a 35-acre campus in Cleveland's University Circle, is affiliated with Case Western Reserve University School of Medicine. The main campus also includes University Hospitals Rainbow Babies & Children's Hospital, ranked among the top children's hospitals in the nation; University Hospitals MacDonald Women's Hospital, Ohio's only hospital for women; and University Hospitals Seidman Cancer Center, part of the NCI-designated Case Comprehensive Cancer Center. UH is home to some of the most prestigious clinical and research programs in the nation, including cancer, pediatrics, women's health, orthopedics, radiology, neuroscience, cardiology and cardiovascular surgery, digestive health, transplantation and urology. UH Cleveland Medical Center is perennially among the highest performers in national ranking surveys, including "America's Best Hospitals" from U.S. News & World Report. UH is also home to Harrington Discovery Institute at University Hospitals – part of The Harrington Project for Discovery & Development. UH is one of the largest employers in Northeast Ohio with 27,000 employees. For more information, go to UHhospitals.org

Media Contact

George Stamatis
[email protected]
216-844-4667
@uhhospitals

http://www.uhhospitals.org/case

Share12Tweet7Share2ShareShareShare1

Related Posts

Probabilistic Brain Atlas Enhances MRI Segmentation

November 5, 2025
blank

Comparative Biometric Study of Trout Species in Himachal

November 5, 2025

Enhanced B-Cell Epitope Prediction via Hybrid Deep Learning

November 5, 2025

Gender, Surgery Side Influence Epilepsy Surgery Outcomes

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Probabilistic Brain Atlas Enhances MRI Segmentation

Comparative Biometric Study of Trout Species in Himachal

Enhanced B-Cell Epitope Prediction via Hybrid Deep Learning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.