• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Applicability of dynamic facilitation theory to binary hard disk systems

Bioengineer by Bioengineer
December 7, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: NITech

Nagoya, Japan–Glasses are amorphous (non-crystalline) solids that are widely used in everyday life and in technological instruments. It is important to understand the behavior of materials that form glasses; that is, to study the dynamics of their glass transition, which is the transition from the liquid state to a glass one with decreasing temperature or increasing pressure. Multiple theoretical models have been developed to explain the relaxation dynamics of materials that form glasses. One such model is the dynamic facilitation theory, which predicts that the dynamics of systems are heterogeneous and relaxation displays parabolic behavior.

"The general predictions of the dynamic facilitation theory hold for thermal systems," lead researcher Masaharu Isobe explains. "However, this theory had not been extended to systems controlled by pressure."

The researchers numerically investigated the glass transition behavior of two-dimensional binary mixtures of hard particles (hard disk) systems considering pressure rather than temperature as the major variable. Their aims were to determine general properties of slow relaxation under supercompressed conditions and investigate if dynamic facilitation theory was applicable to hard disk systems at high pressure.

They used the event-chain Monte Carlo method to calculate the equilibrium states of various hard disk systems at different pressures. This method allowed the equilibrium phases in the systems–including amorphous, mixed crystalline, crystalline-amorphous composite, and crystalline–to be accurately identified. As a result, the researchers could probe the relaxation dynamics in the desired supercompressed region. They found that their results corroborated the dynamic facilitation theory in two ways.

"We confirmed that localized effective excitations randomly distributed in the equilibrated systems facilitated relaxation and average relaxation times extended with increasing compression," Isobe says. "Both of these results indicate that the dynamic facilitation theory is applicable to supercompressed hard disk systems."

These results expand fundamental knowledge of the behavior of materials under pressure, and may contribute to development of glasses with desired properties for specific applications.

###

The article, "Applicability of Dynamic Facilitation Theory to Binary Hard Disk Systems," authored by M. Isobe (Nagoya Institute of Technology, Japan), A. S. Keys and D. Chandler (University of California, Berkeley, USA), and J. P. Garrahan (University of Nottingham, UK), was published in Physical Review Letters (DOI: 10.1103/PhysRevLett.117.145701).

Media Contact

Kuniaki SHiraki
[email protected]
81-527-357-425
@nitechofficial

http://www.nitech.ac.jp/eng/index.html

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Flameless impingement oven

Cookin’ with gas: UWO professor earns patent for flameless industrial oven

March 31, 2023
Lamprey Swimming - Modeling Study

After spinal cord injury, kinesthetic sense helps restore movement, model suggests

March 31, 2023

Plastic transistor amplifies biochemical sensing signal

March 31, 2023

Study shows ketamine could be beneficial for treating brain injury in children

March 31, 2023
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    68 shares
    Share 27 Tweet 17
  • Extinction of steam locomotives derails assumptions about biological evolution

    49 shares
    Share 20 Tweet 12
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cookin’ with gas: UWO professor earns patent for flameless industrial oven

After spinal cord injury, kinesthetic sense helps restore movement, model suggests

Plastic transistor amplifies biochemical sensing signal

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In