• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Antibodies recognize and attack different SARS-CoV-2 spike shapes

Bioengineer by Bioengineer
February 25, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The spikes on the SARS-CoV-2 virus, which causes COVID-19, change shapes; new research reveals ways that antibodies can recognize these different shapes and block the virus and informs the design of vaccines and antiviral therapies

IMAGE

Credit: Image courtesy of Wenwei Li.

ROCKVILLE, MD – The virus that causes COVID-19 belongs to the family of coronaviruses, “corona” referring to the spikes on the viral surface. These spikes are not static–to infect cells, they change shapes. Maolin Lu, an associate research scientist at Yale University, directly visualized the changing shapes of those spike proteins and monitored how the shapes change when COVID-19 patient antibodies attach. Her work, which was published in Cell Host & Microbe in December 2020 and will be presented on Thursday, February 25 at the 65th Annual Meeting of the Biophysical Society informs the development of COVID-19 vaccines and treatments that target the spikes of the SARS-CoV-2 virus, which causes COVID-19.

When the COVID-19 pandemic hit, Lu was quick to apply her expertise studying the HIV-1 virus to SARS-CoV-2. Prior to the pandemic, Lu studied which shapes of the HIV-1 spikes are most susceptible to antibody attack. Using similar techniques, in March 2020, she turned to SARS-CoV-2.

Because the spike proteins are prominent on the outside of the SARS-CoV-2 virus, they are crucial targets for vaccines and therapeutics. The vaccines that have been approved so far have been designed to help the body generate antibodies that recognize this part of the SARS-CoV-2 virus, blocking its entry into cells. However, Lu says, “the spike protein constantly changes shape, this shape-shifting feature not only allows the virus to enter host cells, it also helps the virus escape from being attacked or recognized by antibodies.”

Using an imaging technique to monitor molecular movements, Lu observed that it adopts at least four shapes. She also watched how the spike proteins responded to serum from patients who recovered from COVID-19, which contained antibodies their body made against the SARS-CoV-2 virus. She noticed that some antibodies recognized and attached to the spike protein when it was in an “open” position and ready to stick to cells. Others preferred to attach to a “closed” spike, which is the spike’s dominant position when the virus first enters the body.

“This indicates that antibodies can attack or antagonize the SARS-CoV-2 spike two different ways. One way is to directly occupy the spike’s open position, then the virus cannot get close or associate with the host cells. The other way is to lock the spike into a closed position. The second locking down strategy has been widely used to develop COVID-19 vaccines,” Lu explained.

When it comes to developing new vaccines or treatments, their research shows that targeting the SARS-CoV-2 spike protein when it is in a closed position may be a particularly effective strategy.

###

Media Contact
Leann Fox
[email protected]

Original Source

https://www.biophysics.org/news-room?ArtMID=802&ArticleID=10414&preview=true

Tags: Biomechanics/BiophysicsBiotechnologyChemistry/Physics/Materials SciencesCritical Care/Emergency MedicineDeath/DyingEpidemiologyHealth CareVaccines
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Co-Composting: Quicklime Boosts Nutrient Recovery

Adverse Events in Asian Adults on Brivaracetam

Tumor Microenvironment Dynamics in Breast Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.