• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Anti-malarial drug shows promise for brain cancer treatment

Bioengineer by Bioengineer
May 26, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: VCU Massey Cancer Center

Glioblastoma multiforme (GBM) is an aggressive form of cancer in the brain that is typically fatal. But new findings by VCU Massey Cancer Center and VCU Institute of Molecular Medicine (VIMM) researchers could help increase the effectiveness of the most common current treatments with the addition of lumefantrine, an FDA-approved drug used to treat malaria.

While the current standard of care involving radiation and temozolomide, an anti-cancer chemotherapy, can marginally extend the lives of patients with glioblastoma multiforme brain tumors, resistance of GBM to these therapies is a frequent occurrence. Additionally, the five-year survival rate of GBM patients treated with the standard of care is less than 6 percent, and no current therapies prevent recurrence.

The researchers have focused on discovering FDA-approved drugs and more uncommon agents that could potentially help counteract glioblastoma’s resistance to and effectiveness of treatment. “Our studies uncovered a new potential application of the antimalarial drug as a possible therapy for glioblastoma multiforme resistant to the standard of care entailing radiation and temozolomide,” said Paul B. Fisher, M.Ph., Ph.D., FNAI, the principal investigator of the study recently published in the journal Proceedings of the National Academy of Sciences.

Specifically, lumefantrine can inhibit a genetic element involved in cancer development and progression, Fli-1, which controls resistance of glioblastoma multiforme to radiation and temozolomide.

During in vitro studies (conducted with cells grown in culture) researchers found that incorporating lumefantrine while treating glioblastoma killed cancer cells and suppressed tumor cell growth. This occurred in both glioblastoma cells sensitive to and those that otherwise would be resistant to radiation and temozolomide. Furthermore, during in vivo studies (conducted using mice containing a transplanted human glioblastoma multiforme in their brains), lumefantrine inhibited tumor growth caused by both therapy-sensitive and therapy-resistant glioblastoma cells.

Discovering lumefantrine’s ability to neutralize the body’s resistance to radiation and chemotherapy came through genetic and molecular approaches that identified the new genetic element “Fli-1” as an important genetic element controlling resistance to therapy. This discovery became a focal point of the current research. Researchers found that “heat shock protein B1,” also known as HSPB1, is prominent in glioblastoma tumors, and its expression is regulated by Fli-1. Innovative screening strategies for Fli-1 inhibitors identified lumefantrine as a prospective agent that could bind to Fli-1, inactivate it and thereby suppress expression of important genes regulating growth, survival and oncogenicity (ability to cause tumors) of glioblastoma multiforme.

In addition, two key processes essential for cancer invasion and spread known as extracellular matrix (ECM) remodeling and epithelial mesenchymal transition (EMT) are important factors that regulate glioblastoma’s ability to respond and resist radiation and chemotherapy. Those two processes are regulated by Fli-1 and are inhibited by lumefantrine.

To help treat glioblastoma, researchers will further explore other means to counteract therapy resistance induced by Fli-1.

“These preclinical studies provide a solid rationale for Fli-1/HSPB1 inhibition with lumefantrine as a potential novel approach for glioblastoma management,” Fisher said. “Identification of drugs like lumefantrine from FDA-approved therapeutic agents and from uncommon sources provides opportunities to broaden the breadth and versatility of current therapeutic regimens for glioblastoma multiforme patients.”

Beyond glioblastoma, an elevated expression of Fli-1 can be seen in cancers such as melanoma, ovarian cancer, breast cancer and others, researchers said, suggesting that blocking the cancer-promoting effects of Fli-1 might help other cancer patients as well.

“The present results may have broader implications than just treating glioblastoma,” Fisher said.

###

Fisher is a member of the Cancer Molecular Genetics program and the Thelma Newmeyer Corman Endowed Chair in Oncology at VCU Massey Cancer Center and director of the VIMM. He’s also a professor and chair of the Department of Human and Molecular Genetics at the VCU School of Medicine.

In addition to Fisher, the study was co-authored by Swadesh K. Das, Ph.D., M.S., and Luni Emdad, MBBS, Ph.D., members of the Cancer Molecular Genetics program at VCU Massey Cancer Center, the VIMM and the Department of Human and Molecular Genetics at the VCU School of Medicine. Authors also included Yetirajam Rajesh, Ph.D., and Santanu Maji, Ph.D., from the Department of Human and Molecular Genetics at the VCU School of Medicine; Angana Biswas, Ph.D., Utkarsh Kumar, Ph.D., Indranil Banerjee, Ph.D., Subhayan Das, Ph.D., and Mahitosh Mandal, Ph.D., from the Indian Institute of Technology in Kharagpur, India; and Webster K. Cavenee, Ph.D., from Ludwig Institute for Cancer Research at UC San Diego.

Media Contact
Blake Belden
[email protected]

Original Source

https://massey.vcu.edu/about/news-center/2020-archive/anti-malarial-drug-shows-promise-for-brain-cancer-treatment/

Related Journal Article

http://dx.doi.org/10.1073/pnas.1921531117

Tags: BiologycancerCell BiologyGenesGeneticsMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Blue Zones and American College of Lifestyle Medicine Introduce Blue Zones® Certification for Physicians and Health Professionals

November 10, 2025

MM-24: A Potent Polyherbal Formulation’s Benefits

November 10, 2025

Predicting Late Treatment Failure in Falciparum Malaria

November 10, 2025

Gut Microbiota Imbalance in Polycystic Ovary Syndrome

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Powered Digital Detection of Alzheimer’s and Related Dementias: A Zero-Cost Solution Requiring No Extra Time from Clinicians

Stepping Strong: Integrating Podiatry into Chemotherapy Care Enhances Patient Outcomes

Tiny Fish-Inspired Robots Collaborate to Target Multi-Point 3D Lesions for Precise Drug Delivery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.