• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Anesthetizing fish may affect research outcomes

Bioengineer by Bioengineer
October 4, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Anesthetics may alter coloration in certain fish species, influencing the traits researchers are trying to study

IMAGE

Credit: Kolluru lab

Fish use colorful patterns to signal to each other, including advertising for mates and warding off rivals. Studying these colors, especially in small and squirmy species, sometimes entails anesthetizing and photographing the fish to obtain color measurements from digital images.

Typical measurements include the hue (what we typically think of as the “color”), saturation (the intensity of the color, a function of how much gray is mixed in with it, also called “chroma”) and brightness (how much white or black is mixed in with the color). The differences among individuals may be subtle and require precise measurement. The ultimate goal for behavioral ecology studies is usually to examine the relationship between behavior and the colors as other fish see them. However, anesthetics may themselves alter coloration, influencing the very traits the researchers are trying to study.

Males of the livebearing tropical fish Girardinus metallicus are very aggressive when competing for mates. These males have yellow bodies, and males whose yellow is brighter and more saturated are more aggressive. A paper published in The Journal of Fish Biology shows that the commonly used fish anesthetics clove oil and tricaine methanesulfonate (MS222) affect color measurements obtained from digital images.

The researchers photographed the fish individually in a water-filled chamber without anesthetics, anesthetized with clove oil, and anesthetized with MS22 (in randomized order) and measured the hue, saturation and brightness of multiple body regions from digital images measured using computer software. They demonstrated that the anesthetics altered the hue (though it was always within the yellow range), increased the saturation and decreased the brightness of multiple body regions.

The alteration was likely due to rapid “physiological” color change, caused by the movement of structures called melanosomes inside melanin pigment-producing cells. When melanosomes disperse, the area appears dark, and when melanosomes aggregate, the area appears light. The anesthetics may have caused dispersion of melanosomes and consequent darkening of the yellow body regions.

The results that the authors report could be important for multiple disciplines, including behavioral studies with the goals of linking coloration to behavioral variation and comparing groups of fishes to understand the impacts of coloration on evolutionary fitness, studies aimed at understanding the physiological impacts of investment into color traits, and aquaculture studies attempting to characterize the quality of stocks based on coloration traits.

The authors suggest caution when using anesthetics to immobilize fish for certain color measurements. Instead, they advocate a method already employed by some researchers: photographing these types of fish in a small, water-filled chamber under controlled light conditions and with color standards to minimize movement while obtaining results more indicative of the color likely to be seen by other fish in the wild.

###

Media Contact
Gita Kolluru
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/jfb.14138

Tags: BiologyMarine/Freshwater Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.