• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, May 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Android-based application for photoacoustic tomography image reconstruction

Bioengineer by Bioengineer
April 27, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Photoacoustic tomography (PAT) is a hybrid imaging technique that combines optical illumination with ultrasound detection for high-resolution imaging of deep tissues. Utilizing the photoacoustic (PA) effect, PAT provides a distinct advantage with scalable resolution, higher imaging depth, and high contrast imaging. It uses nanosecond laser pulses to illuminate the tissue of interest, enabling their chromophores to absorb the incident laser energy. This results in a local temperature rise and generates pressure waves that propagate to the tissue boundary as ultrasound waves. These PA waves are then acquired with the help of an ultrasound transducer and converted into internal absorption maps using reconstruction algorithms.

Experimental pulsed laser diode based in vivo PAT imaging system.

Credit: Hui et al., doi 10.1117/1.JBO.28.4.046009

Photoacoustic tomography (PAT) is a hybrid imaging technique that combines optical illumination with ultrasound detection for high-resolution imaging of deep tissues. Utilizing the photoacoustic (PA) effect, PAT provides a distinct advantage with scalable resolution, higher imaging depth, and high contrast imaging. It uses nanosecond laser pulses to illuminate the tissue of interest, enabling their chromophores to absorb the incident laser energy. This results in a local temperature rise and generates pressure waves that propagate to the tissue boundary as ultrasound waves. These PA waves are then acquired with the help of an ultrasound transducer and converted into internal absorption maps using reconstruction algorithms.

This process of generating initial pressure maps can be carried out with several different image reconstruction algorithms, including the simple delay-and-sum (DAS) beamformer. This algorithm back-projects the acquired signals from various tissue locations, which are then added at every pixel in the reconstructed image. However, this makes the DAS beamformer computationally expensive and time-consuming, and results in artifacts, i.e., anomalies, in the reconstructed images. Despite these drawbacks, its simplicity and ease of implementation make it a popular choice for PAT reconstruction.

Typically, implementing such reconstruction algorithms requires a workstation, desktop, or laptop with extensive computational resources. But the computational power of mobile phones has been growing in recent years. Although mobile phones have been proposed for various microscopy modalities including ultrasound imaging, their utility for photoacoustic imaging such as PAT image reconstruction has not been explored.

Capitalizing on the advanced processing ability of mobile phones, researchers from Singapore and the United States have now developed an Android-based application for PAT image reconstruction. The study was led by Manojit Pramanik, Northrop Grumman Associate Professor in the Department of Electrical and Computer Engineering at Iowa State University, and published in the Journal of Biomedical Optics (JBO).

The developed application utilizes a single-element ultrasound transducer (SUT)-based DAS beamformer algorithm for image reconstruction on Kivy—a cross-platform Python 3.9.5 framework.

The researchers verified its performance on different mobile phones by using simulated and experimental PAT datasets. While the simulated datasets consisted of point targets, triangular shape, and rat’s brain vessel shape, experimental datasets comprised of a point source phantom, a triangular shape phantom and blood vessels in the brain of live rats.

“The developed application can successfully reconstruct the PAT data into high-quality PAT images with signal-to-noise ratio values above 30 decibels,” comments Pramanik.

Interestingly, the algorithm’s computational time on a Huawei P20 mobile phone was comparable to that on a laptop for small datasets. Furthermore, two-fold downsampling of the original dataset reduced the computational time while maintaining the image quality, thus allowing image reconstruction with both speed and quality. In contrast, three-fold downsampling visibly degraded the PAT images.

Moreover, the researchers found that with the Samsung Galaxy S21+’s advanced processor, PAT reconstruction could be achieved in only 2.4 seconds. “This is a considerably reduced running time for image reconstruction and highlights the efficiency of the mobile phone application,” notes Pramanik.

JBO Editor-in-Chief Brian Pogue, Chair of Medical Physics at University of Wisconsin–Madison, remarks, “This first-of-its-kind application provides an opportunity for PAT image reconstruction on inexpensive, portable, and widely available mobile phones. Going ahead, the application can make PAT systems more adaptable and extendable to other fields of biomedical imaging, facilitating point-of-care diagnosis.” He adds, “The code for this Android-based application has been made freely available on GitHub, making this a major service to the biomedical imaging community.”

Read the Gold Open Access article by Hui et al., “Android mobile-platform-based image reconstruction for photoacoustic tomography,” J. Biomed. Opt. 28(4), 046009 (2023), doi 10.1117/1.JBO.28.4.046009.



Journal

Journal of Biomedical Optics

DOI

10.1117/1.JBO.28.4.046009

Article Title

Android mobile-platform-based image reconstruction for photoacoustic tomography

Article Publication Date

27-Apr-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Achala Vagal

Study finds distinct patterns of pre-existing brain health characteristics in stroke patients

May 27, 2023
Mothers and fathers left unprepared for parenthood by government health failures

New moms and dads left unprepared for parenthood by government health ‘failures’, report warns

May 27, 2023

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?

May 26, 2023

Nanorobotic system presents new options for targeting fungal infections

May 26, 2023

POPULAR NEWS

  • the University of Haifa

    Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    34 shares
    Share 14 Tweet 9
  • The case for engineering our food

    73 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study finds distinct patterns of pre-existing brain health characteristics in stroke patients

New moms and dads left unprepared for parenthood by government health ‘failures’, report warns

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In