• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, April 10, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Andeans with altitude sickness produce massive amounts of red blood cells

Bioengineer by Bioengineer
November 7, 2016
in Science
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UC San Diego Health

To better understand why some people adapt well to life at high altitude while others don't, researchers at University of California San Diego School of Medicine studied red blood cells derived from representatives of both groups living in the Andes Mountains. The study, published November 7 by the Journal of Experimental Medicine, reveals that high-altitude, low-oxygen dwellers prone to chronic mountain sickness produce massive amounts of red blood cells thanks to overproduction of the enzyme SENP1.

"In addition to improving the health of millions of people around the world who live above 8,000 feet, information on how Andeans have adapted — or not adapted — to high altitude life might teach us how to speed up red blood cell production at lower altitudes, such as in anemia or when blood transfusions are needed rapidly," said senior author Gabriel Haddad, MD, Distinguished Professor and chair of the Department of Pediatrics at UC San Diego School of Medicine and pediatric pulmonologist, physician-in-chief and chief scientific officer at Rady Children's Hospital-San Diego.

Chronic mountain sickness affects approximately 20 percent of people who live at high altitudes. One critical aspect of the condition is polycythemia, the overproduction of red blood cells. Some extra red blood cells can be a good thing in high altitude, low oxygen environments — they help keep blood oxygenated — but too many thicken blood, increasing a person's risk of heart attack and stroke, even in young adults.

In the study, the team, led by Priti Azad, PhD, associate project scientist in Haddad's lab and first author of the study, collected skin cells from people living in the Andes Mountains — four healthy and five who suffer from chronic mountain sickness — plus an additional three healthy people who live at sea level, as controls. To produce enough red blood cells from each participant to study them in the lab, the researchers converted the skin cells into a special type of stem cell, called induced pluripotent stem cells (iPSCs). Then, adding a cocktail of growth factors and other molecules, they coaxed the iPSCs into specializing into red blood cells. Multiple samples were tested for each person, for a total of at least 24 iPS cell lines.

The researchers exposed the red blood cells to low oxygen conditions that mimic high altitude — five percent oxygen for three weeks. As a result, red blood cells from healthy sea-level or high altitude-dwelling donors increased a little or not at all. In contrast, numbers of red blood cells from high-altitude dwellers with chronic mountain sickness increased 60-fold.

Haddad's team wanted to understand why people with chronic mountain sickness produce so many extra blood cells in response to low oxygen. In a previous study in which the team compared the genomes of high-altitude dwellers with and without chronic mountain sickness, one gene that varied between the two groups stood out — sentrin-specific protease 1 (SENP1), which is increased in low oxygen in people with chronic mountain sickness but not healthy people. This gene encodes the enzyme SENP1, which acts as a gene regulator by removing small protein tags on transcription factors, other proteins that determine when certain genes are turned on or off.

To determine if SENP1 plays a role in high-altitude adaptation, in this study the researchers inhibited the SENP1 gene in chronic mountain sickness patients' iPSCs. As a result, the excessive red blood cell production was reduced by more than 90 percent. On the flip side, when the researchers added extra SENP1 to healthy, adapted highlander iPSCs, red blood cell production increased 30-fold, nearly recapitulating that seen in chronic mountains sickness.

Further experiments suggested how SENP1 affects red blood cell production — elevated levels of the enzyme in chronic mountain sickness in turn boost levels of several other proteins that promote cell division and survival, including VEGF, GATA1 and Bcl-xL.

Haddad and Azad are now looking forward to the next phase of their research.

"We're interested in determining the early steps in this process — how low oxygen triggers SENP1 in the first place," Azad said. "We are also investigating how existing altitude sickness medications, such as Diamox, work and whether or not it's through this same mechanism."

###

Co-authors of this study also include: Huiwen W. Zhao, Pedro J. Cabrales, Roy Ronen, Dan Zhou, Orit Poulsen, Yu Hsin Hsiao, Vineet Bafna, UC San Diego; and Otto Appenzeller, New Mexico Health Enhancement and Marathon Clinics Research Foundation.

Media Contact

Heather Buschman
[email protected]
858-249-0456
@UCSanDiego

http://www.ucsd.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    851 shares
    Share 340 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    59 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    55 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

GeneticsCell BiologyBiologyPublic HealthMedicine/HealthcancerInfectious/Emerging DiseasesMaterialsTechnology/Engineering/Computer ScienceClimate ChangeChemistry/Physics/Materials SciencesEcology/Environment

Recent Posts

  • Men with low health literacy less likely to choose active surveillance for prostate cancer after tumor profiling
  • Level of chromosomal abnormality in lung cancer may predict immunotherapy response
  • Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis
  • Better metric for thermoelectric materials means better design strategies
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In