• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ancient fossilized tracks suggest multicellular life far older than previously thought

Bioengineer by Bioengineer
February 13, 2019
in Biology
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Controversial discovery suggests early complex organisms may have originated 2.1 billion years ago–more than 1.5 billion years sooner than previous evidence indicated.

IMAGE

Credit: Abder El Albani


Newly discovered fossilized tracks suggest multicellular life could be 1.5 billion years older than previously thought, according to a new study by an international team of researchers including scientists at the University of Alberta.

“The preservation of fossilized tracks, or trace fossils, suggests that multicellular organisms that could move around to reach food resources may already have existed 2.1 billion years ago, more than 1.5 billion years older than previously thought,” explained Kurt Konhauser, professor in the University of Alberta’s Department of Earth and Atmospheric Sciences and co-author on the study.

Ancient fossilized tracks suggest multicellular organisms originated 2.1 billion years ago.

The sample that contains the fossilized tracks of early multicellular life. Image courtesy of Abder El Albani.

The fossils, found in the Francevillian Series Formation, located in Gabon, Africa, are likely the result of ancient mucus trails, left by multicellular life such as modern amoeboid cells in the search for food. The samples range from 6 millimeters across and 170 millimeters in length through the sediment layers. But despite their small size, the paper on this discovery has sparked international controversy.

“The question arising from this research then is why do we go 1.5 billion years before we see similar features in the rock record?” asked Konhauser. “We don’t see anything like this again until 585 million years ago.”

Some speculate that this early emergence of complex life went extinct due to some environmental factor. Others suggest that similar fossilized traces may have existed but were not preserved, or simply gone unnoticed elsewhere.

“The broader community is right to be skeptical about the interpretation,” said Konhauser. “However, one of the current paradigms relating to the evolution of multicellular organisms is oxygen availability, and 2.1 billion years ago there was no shortage of oxygen in shallow marine waters.”

Future research will examine similar well-oxygenated, shallow-marine environments that are between 2.1 billion and 500 million years old.

###

This research was conducted in collaboration with Abder El Albani of the University of Poitiers in Poitiers, France. The paper, “Organism motility in an oxygenated shallow-marine environment 2.1 billion years ago,” was published this week in Proceedings of the National Academy of Sciences USA (doi: 10.1073/pnas.1815721116).

Media Contact
Katie Willis
[email protected]
780-248-1215

Original Source

https://www.ualberta.ca/science/science-news/2019/february/multicellular-life-tracks

Related Journal Article

http://dx.doi.org/10.1073/pnas.1815721116

Tags: BiologyEarth ScienceEvolutionGeology/SoilMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative 3D-Printed Scaffolds Pave the Way for Spinal Cord Injury Recovery

Innovative 3D-Printed Scaffolds Pave the Way for Spinal Cord Injury Recovery

August 25, 2025
blank

Regulating Flavonoids and Hormones in Ancient Ginkgo

August 25, 2025

Acacia Saligna Seed Meal: A Soy Replacement for Broilers

August 25, 2025

Cell Science Unlocked: The Dynamic Duo of Essential Tools for Discovery

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revamping EDE-Q and CIA for Inpatient Care

Linking Surrogate Endpoints to Outcomes in IgA Nephropathy

In Vivo Insights into Aggregation-Induced Emission

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.