• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

An open-access tool to accelerate drug discovery

Bioengineer by Bioengineer
May 19, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: SBNB lab, IRB Barcelona

Barcelona, 19 May 2020.- Knowledge of how a molecule interacts with the organism is crucial in order to consider its therapeutic potential. Headed by ICREA researcher Patrick Aloy, the Structural Bioinformatics and Network Biology (SBNS) lab at IRB Barcelona has presented the Chemical Checker, an on-line open-access tool that provides information on the effects exerted by more than 1M compounds in a wide range of biological settings. The Chemical Checker, published in Nature Biotechnology, offers a rich portrait of the small molecule data available in the public domain, opening an opportunity for making queries that would otherwise be impossible using chemical information alone.

The SBNB lab has already proven the tool’s potential by reverting Alzheimer’s disease’s gene alterations in vitro, using approved drugs and experimental compounds. These scientists have also identified several compounds that could potentially substitute ‘biologics’ as treatments, such as antibody therapies, which show high specificity and efficiency, but are expensive and prone to pharmacokinetic issues. “We envision many applications for the Chemical Checker in the drug discovery process,” explains Aloy “such as the formulation of logical queries to prioritize drug repositioning and combination opportunities, based on desired bioactivity traits.”

The similarity principle

The Chemical Checker works upon the similarity principle. Similar compounds not only show analogous chemical properties but also share biological behaviour. Molecules with similar cell-sensitivity profiles or eliciting similar side-effects often have the same mechanism of action, even when their chemical structures appear to be unrelated.

The so-called ‘similarity principle’ has been the driving force of drug discovery and, in one flavour or another, the calculation of compound similarities lies behind most of the methods used to chart and exploit the chemical space. Evidence suggests that ‘biological’ similarities offer an alternative means to navigate chemical space, possibly unveiling non-obvious, clinically relevant similarities between compounds.

Five levels of increasing complexity

A drug is often an organic molecule (Chemistry) that interacts with one or several protein receptors (Targets), triggering perturbations of biological pathways (Networks) and eliciting phenotypic outcomes that can be measured in cell-based assays (Cells) before delivery to patients (Clinics). The Chemical Checker tool offers information of small molecules in these five levels of increasing complexity: Chemistry, Targets, Networks, Cells and Clinics.

“With the Chemical Checker, we are pushing the similarity principle beyond chemical properties, reaching various ambits of biology and enabling the right level of experimental detail at each step of the drug discovery pipeline,” explains Miquel Duran.

A collaboration with Amazon to target COVID

The Chemical Checker has already led to a collaboration with Amazon to make available an open access database to provide researchers from around the world with an expanded portfolio of molecules with the potential to fight COVID-19. Amazon’s expertise in text-mining, machine learning and natural language understanding has allowed the automatic analysis of scientific articles to be incorporated into the Chemical Checker.

To facilitate data access, the SBNB lab has built a web-based resource which allows users to run similarity searches for a given compound across the 25 available Chemical Checker bioactivity spaces. The full code of the resource and Chemical Checker signatures can be downloaded from the web, or simply accessed via a programming interface. The COVID platform is available here.

###

Media Contact
Nahia Barberia
[email protected]

Original Source

https://www.irbbarcelona.org/en/news/an-open-access-tool-to-accelerate-drug-discovery

Related Journal Article

http://dx.doi.org/10.1038/s41587-020-0502-7

Tags: Algorithms/ModelsBiochemistryBioinformaticsBiologyBiomechanics/BiophysicsBiotechnologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Antibody-Drug Targets in Breast Cancer Metastases Explored

Nurses’ Earthquake Experiences Shape Professional Practices

Muse Cells Reduce Neurodegeneration in Parkinson’s Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.