• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

An increase in the number of extreme cold days in North China during 2003–2012

Bioengineer by Bioengineer
March 8, 2024
in Chemistry
Reading Time: 2 mins read
0
Winter temperature (red solid curve) increases over past decades. Within the study period (1989–2021), the number of extreme cold days (blue solid line) in North China increases around the year 2003 and then decreases around the year 2013. The dashed li
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How extreme weather and climate events change is an intriguing issue in the context of global warming. As IPCC AR6 points out, cold extremes have become less frequent and less severe since the 1950s, mainly driven by human-induced climate change. However, cold extremes could also exhibit robust interdecadal changes at regional scale.

Winter temperature (red solid curve) increases over past decades. Within the study period (1989–2021), the number of extreme cold days (blue solid line) in North China increases around the year 2003 and then decreases around the year 2013. The dashed li

Credit: ZHU Yali

How extreme weather and climate events change is an intriguing issue in the context of global warming. As IPCC AR6 points out, cold extremes have become less frequent and less severe since the 1950s, mainly driven by human-induced climate change. However, cold extremes could also exhibit robust interdecadal changes at regional scale.

 

A recent study by researchers from the Institute of Atmospheric Physics, Chinese Academy of Sciences, presents robust interdecadal changes in the number of extreme cold days in winter over North China during 1989–2021, and the findings have been published in Atmospheric and Oceanic Science Letters. Specifically, the number of extreme cold days increased around the year 2003 and then decreased around the year 2013, with a value of 8.7 days per year during 1989–2002, 13.5 during 2003–2012, and 6.6 during 2013–2021.

 

During 2003–2012, the Siberian–Ural High strengthened and the polar jet stream weakened, which favored frequent cold air intrusion into North China, inducing more extreme cold days. In addition, the intensity of extreme cold days in North China showed no significant difference in the three periods. However, the related cold air could influence a larger area, which was especially the case for the stronger cold air center located to the west of Lake Baikal during 2013–2021.

 

The increase in the number of extreme cold days in North China in 2003–2012 probably arose from natural decadal variability. However, as pointed out by the corresponding author of this study, Prof. Yali Zhu, “This is still a challenging issue that needs further exploration to quantify the relative contributions of natural variability and human activity to regional extreme events.”

How extreme weather and climate events change is an intriguing issue in the context of global warming. As IPCC AR6 points out, cold extremes have become less frequent and less severe since the 1950s, mainly driven by human-induced climate change. However, cold extremes could also exhibit robust interdecadal changes at regional scale.

 



Journal

Atmospheric and Oceanic Science Letters

DOI

10.1016/j.aosl.2024.100468

Article Title

Interdecadal changes in the frequency of winter extreme cold events in North China during 1989–2021

Article Publication Date

5-Feb-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

September 10, 2025
Oxford AI Tool Revolutionizes Supernova Discovery Amidst Cosmic Noise

Oxford AI Tool Revolutionizes Supernova Discovery Amidst Cosmic Noise

September 10, 2025

Innovative Methods for Generating Methanol Using Electricity and Biomass

September 9, 2025

Isotope Tafel Analysis Reveals Proton Transfer Kinetics

September 9, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    52 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Movement and Annual Cycle in Spoonbills

Targeted Intraoperative Radiotherapy Advances in Early Breast Cancer

Blood Transfusions Increase Bronchopulmonary Dysplasia Risk in Preemies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.