• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

An extra gene increases inhibitory signaling in the brain of the Down syndrome mouse

Bioengineer by Bioengineer
April 20, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An extra copy of a gene that controls synapse formation in the cortex causes excessive inhibitory signaling and may contribute to Down syndrome, according to a new study publishing April 20th in the open access journal PLOS Biology by Bing Ye of the University of Michigan, US, and colleagues. The finding may help explain some of the neurologic consequences of the syndrome.

An extra gene increases inhibitory signaling in the brain of the Down syndrome mouse

Credit: Bing Ye (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/)

An extra copy of a gene that controls synapse formation in the cortex causes excessive inhibitory signaling and may contribute to Down syndrome, according to a new study publishing April 20th in the open access journal PLOS Biology by Bing Ye of the University of Michigan, US, and colleagues. The finding may help explain some of the neurologic consequences of the syndrome.

Down syndrome is caused by a trisomy of chromosome 21, where individuals have three rather than two copies of this chromosome. The higher dosage of every gene on chromosome 21 has multiple effects, including neurological ones, but it is unclear exactly which of the 200-300 genes are responsible for which symptoms of the condition.

Previous work, including by the authors of the new study, has shown that a gene encoding Down syndrome cell adhesion molecule (DSCAM) is likely involved in at least some neurological effects, as increased levels in animal models affect the size of presynaptic terminals (regions of neurons that release neurotransmitters to downstream neuronal receptors).

Within the brain, GABAergic synapses release GABA, an inhibitory neurotransmitter that diminishes the firing of its downstream targets. Ye and colleagues asked what the effect of DSCAM triplication was on GABAergic neurons in the neocortex, the outer layer of the brain. They crossed a female mouse carrying a mouse equivalent of chromosome 21 trisomy (used as a model of Down syndrome) with a disomic (euploid) male mouse carrying one normal DSCAM gene and one non-functional mutant gene. Thus, the offspring included euploid mice with two functional copies of DSCAM (effectively normal mice), trisomic mice with three copies of functional DSCAM (modeling Down syndrome), and trisomic mice with two functional copies of DSCAM (i.e., effectively normal for DSCAM, but not for the rest of chromosome 21).

They found that mice with three copies of a functional DSCAM gene had an increase in the number of GABAergic terminals that formed synapses on target neurons in the neocortex. Mice with two functional DSCAM genes had normal numbers of terminals, despite having elevated levels of amyloid precursor protein (APP) in the brain, another biochemical consequence of trisomy 21 (due to triplication of the APP gene).

The effect of gene triplication was seen functionally as well—mice with three copies of the gene had more inhibitory signaling in the target areas of the neocortex, suggesting that excessive DSCAM was the cause of this increased GABAergic synaptic transmission as well as the higher number of GABAergic nerve terminals. The authors found they could trigger the opposite effect (i.e. reduction of nerve terminals and loss of GABAergic signaling) if they prevented the production of normal levels of DSCAM.

“Altered DSCAM expression has been linked to multiple brain disorders,” Ye said, including Down syndrome, autism spectrum disorder, intractable epilepsy, and bipolar disorder. “Our results suggest that dysregulation of DSCAM levels may be a common pathogenic driver of GABAergic dysfunction across these conditions.”

Ye adds, “This study shows excessive inhibitory connections in the cerebral cortex of mouse models of Down syndrome, and demonstrates that the extra copy of the DSCAM gene is the cause.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002078

Citation: Liu H, Caballero-Florán RN, Hergenreder T, Yang T, Hull JM, Pan G, et al. (2023) DSCAM gene triplication causes excessive GABAergic synapses in the neocortex in Down syndrome mouse models. PLoS Biol 21(4): e3002078. https://doi.org/10.1371/journal.pbio.3002078

Author Countries: United States

Funding: see manuscript



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3002078

Method of Research

Experimental study

Subject of Research

Animals

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

August 27, 2025
blank

Immune Cells in the Brain: Crucial Architects of Adolescent Neural Wiring

August 26, 2025

Dihydromyricetin Shields Against Spinal Cord Injury Damage

August 26, 2025

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Managing Jurema-Preta in Caatinga Silvopastoral Systems

Exploring Aged Garlic Extract’s Effects on Oral Bacteria

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.