• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

An electronic signal expands the material by a factor of 100

Bioengineer by Bioengineer
October 29, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Reversible electronic solid-gel switching of a conjugated polymer

IMAGE

Credit: Thor Balkhed

Researchers at the Laboratory of Organic Electronics, Linkoping University, have discovered a material that can both increase and reduce its volume when exposed to a weak electrical pulse. In a sponge, or filter, the researchers can control the size of particles that pass through.

Materials, such as solids and gels, that change volume depending on temperature or pH have long been available. Such materials are used in control units (one example of which are windows in greenhouses that automatically open and close depending on the temperature). They are also used in robots and in other electromechanical systems and in applications in biomedicine. One property that researchers have, however, long sought is the change of a material from a solid form to a gel state with the aid of an electrical signal. It is particularly desirable that such electronic control of the phase transition is reversible. The goal is to be able to control the volume by electrical means. This is possible in current materials, but researchers have only been able to achieve at most a doubling of the volume.

Scientists at the Laboratory of Organic Electronics, Campus Norrköping, have now discovered a new material, a conducting polymer, that can increase its volume by a factor of more than 100. The material was synthesized in collaboration with researchers from Imperial College in London. The change takes place when the material is placed into an electrolyte and subjected to a weak electrical voltage of +0.8 V. If a negative voltage, -0.8 V, is instead applied, the material contracts, nearly the whole way back to its original volume.

This is a significantly larger volume change than those previously reported, not only in conducting polymers but also in other materials controlled by an electrical signal.

Experiments carried out by Johannes Gladisch and Eleni Stavrinidou have involved the conducting polymer being placed as a film with a thickness of a few micrometres around an electrically conducting carbon fibre (shown in the video linked here). When electrical pulses with magnitudes of +0.5 V or +0.8 V are applied, the material changes its internal structure, then absorbs water and is finally converted to a gel that expands to 14 or 120 times the original volume. When pulses of magnitude +/- 0.5 V are repeatedly applied, the material expands by approximately 300%, or to three times, with respect to its previous contracted state. The change in volume is reversible.

The scientists also describe an application in the article, published in Advanced Science. This is a smart sponge, or filter, in which they can control the expansion electronically, and in this way change the pore size by 85%.

“We can control the pore size of a filter electronically, and potentially actively control the size of particles that pass through. This means that the properties of this smart filter can be dynamically changed to allow different types or different sizes of particle to pass through. This function can be used for sieving, filtration, purification, and in process chemistry. It may also have applications in medicine and biochemistry”, says Magnus Berggren, professor in organic electronics and director of the Laboratory of Organic Electronics.

###

Reversible Electronic Solid-Gel Switching of a Conjugated Polymer, Johannes Gladisch, Eleni Stavrinidou, Sarbani Ghosh, Alexander Giovannitti, Maximilian Moser, Igor Zozoulenko, Iain McCull and Magnus Berggren. Advanced Science, 2019, DOI 10.1002/advs.201901144

Contact: Magnus Berggren, professor, [email protected],

+46 11 363637

Eleni Stavrinidou, assistant professor, [email protected]

+46 11 363352

Video: https://youtu.be/i09jW3FcDfc

Reversible Electronic Solid-Gel Switching of a Conjugated Polymer

The material has been placed around a conducting fibre. In contact with an electrolyte, it expands to 100 times its volume when the first pulse, 0.8 V, is applied. When a pulse of -0.8 V is subsequently applied, it returns nearly to its original form. This can be repeated several times.

Media Contact
Eleni Stavrinidou
[email protected]
46-113-63352

Original Source

https://liu.se/en/news-item/en-elektrisk-puls-okar-materialets-volym-100-ganger

Related Journal Article

http://dx.doi.org/10.1002/advs.201901144

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Co-electroreduction of CO and Glyoxal Yields C3 Products

Co-electroreduction of CO and Glyoxal Yields C3 Products

November 5, 2025
blank

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025

Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

November 5, 2025

New Lightning Forecasting Technology Aims to Safeguard Future Aircraft

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Digital Solution for Older Women’s Pelvic Health

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

Quantum-Boosted Transfer Learning for Underwater Species Classification

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.