• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

An alternative hypothesis on the faunal colonization of the Himalayas?

Bioengineer by Bioengineer
February 9, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Matthias Stöck

Until now, the fauna of the Himalayas was considered to be an "immigration fauna", with species that have immigrated primarily from neighbouring regions to the west and east since the geological formation of this mountain range. Using molecular-genetic methods, a German-Chinese research team has now tested an alternative colonization hypothesis on lazy toads (Pelobatoidea). The findings indicate that this group arose earlier than assumed in southern Tibet, and went on to colonize the Himalayas from there after its formation. The immigration and evolution of many species in the Himalayas might therefore have taken a different course than previously assumed.

The Himalayas are one of the global "hotspots" of biodiversity; thousands of species are believed to be as yet undiscovered or not yet scientifically described. The history of the population of the Himalayas is still not fully understood. Until now, most species were assumed to have immigrated into the High Himalayas relatively recently, from the west and east. One theory that has received little attention to date works on the assumption that the origins of many Himalayan species began far earlier, in southern Tibet. This assumption is also in line with modern findings of the geological origins of the Himalaya-Tibet mountain system.

Researchers from the Helmholtz Centre for Environmental Research (UFZ), the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), the University of Rostock, the Natural History Museum of Erfurt and the Chinese Academy of Sciences have now been the first to test this theory on a group of high-mountain vertebrates. For this purpose, they chose the less mobile lazy toads from the genus Scutiger of the Pelobatoidea, a species group found along of the Himalayas and in eastern Tibet, in habitats at altitudes between 2,500 and 5,000 metres. To date, it was also assumed that lazy toads had colonized the Himalayas from neighbouring mountainous regions to the east. The researchers analysed genetic samples from populations of Scutiger in order to decode their evolutionary relationships. Furthermore, they dated the origin of the species using evolutionary trees calculated from DNA sequences in comparison to the uplifting history of the Himalaya-Tibetan mountain system. This revealed that the Himalayan species formed a separate group that is apparently evolutionarily older than the one found on the Tibetan Plateau and in adjacent mountain ranges to the east.

The question is: where do these evolutionarily older Scutiger come from? "They apparently evolved in today's southern Tibet as long ago as in the Eocene Epoch, i.e. the period in which lignite was created. But the formation of mountains and the desiccation of Tibet forced the populations to gradually move out of their original habitats towards the south into the Himalayas that were rising upwards", outlines Dr. Joachim Schmidt of the University of Rostock. Further research is now planned to substantiate the researchers' observations. "Our findings demonstrate that common biogeographical opinions have to be called into question time and time again and checked on the basis of the most recent geoscientific knowledge", explains the UFZ's Dr. Sylvia Hofmann. "Molecular-genetic methods provide a decisive new approach to testing old biogeographical hypotheses", adds the IGB's Dr. Matthias Stöck.

###

Media Contact

Dr. Sylvia Hofmann
[email protected]
49-341-235-482-306
@ufz_de

http://www.ufz.de/

Original Source

http://www.ufz.de/index.php?en=36336&webc_pm=19/2017 http://dx.doi.org/10.1038/s41598-017-03395-4

Share12Tweet7Share2ShareShareShare1

Related Posts

Turning Oyster Shells into Conservation Tools: Archaeology’s Innovative Approach to Sustainability

Turning Oyster Shells into Conservation Tools: Archaeology’s Innovative Approach to Sustainability

November 4, 2025
Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

November 4, 2025

Pond Management Strategies Could Boost Native Salamander Conservation

November 4, 2025

New Study Explores the Impact of Mucus Plugs in COPD Development

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

Microscopic Swarms, Massive Potential: Engineers Develop Adaptive Magnetic Systems for Healthcare, Energy, and Environmental Solutions

Fiber Optics Enter a New Era for In-Depth Exploration of Brain Circuits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.