• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 15, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

An 18-carat gold nugget made of plastic

Bioengineer by Bioengineer
January 10, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ETH Zurich

Lovers of gold watches and heavy jewellery will be thrilled. The objects of their desire may someday become much lighter, but without losing any of their glitter. Especially with watches, a small amount of weight can make all the difference. No one wants to wear a heavy watch on their wrist, even if it’s made of real gold. After a time, it becomes uncomfortable and annoying.

Formerly a postdoc in the ETH lab headed by Raffaele Mezzenga, Professor of Food and Soft Materials, Leonie van ‘t Hag set to create a new form of gold that weighs about five to ten times less than traditional 18-carat gold. The conventional mixture is usually three-quarters gold and one-quarter copper, with a density of about 15 g/cm3.

That’s not true for this new lightweight gold: its density is just 1.7 g/cm3. And nonetheless it is still 18-carat gold. How was this miraculous lightness achieved Instead of a metal alloy element, van ‘t Hag, Mezzenga and colleagues used protein fibres and a polymer latex to form a matrix in which they embedded thin discs of gold nanocrystals. In addition, the lightweight gold contains countless tiny air pockets invisible to the eye. The researchers’ study on this process has just been published in the journal Advanced Functional Materials.

Gold platelets and plastic melt into a material that can be easily processed mechanically.

Here’s how the researchers create the new lightweight gold: first, they add the ingredients to water and create a dispersion. After adding salt to turn the dispersion into a gel, next they replace the water in it with alcohol.

Then they place the alcohol gel into a pressure chamber, where high pressures and a supercritical CO2 atmosphere enables miscibility of the alcohol and the CO2 gas; when the pressure is released, everything turns it into a homogeneous gossamer-like aerogel. Heat can be further applied afterwards to anneal the plastic polymers, thus transforming the material and compacting into the final desired shape, yet preserving the 18 carat composition.

Properties of a plastic workpiece

“This gold has the material properties of a plastic,” Mezzenga says. If a piece of it falls onto a hard surface, it sounds like plastic. But it glimmers like metallic gold, and can be polished and worked into the desired form.

The researchers can even adjust the hardness of the material by changing the composition of the gold. They can also replace the latex in the matrix with other plastics, such as polypropylene. Since polypropylene liquifies at some specific temperature, “plastic gold” made with it can mimic the gold melting process, yet at much lower temperatures. Furthermore, the shape of the gold nanoparticle can change the material’s colour: “nanoplatelets” produce gold’s typical shimmer, while spherical nanoparticles of gold lend the material a violet hue.

“As a general rule, our approach lets us create almost any kind of gold we choose, in line with the desired properties,” Mezzenga says.

Gold for watchmaking and electronics

Mezzenga points out that, while the plastic gold will be in particular demand in the manufacture of watches and jewellery, it is also suitable for chemical catalysis, electronics applications or radiation shielding. The researchers have applied for patents for both the process and the material.

###

Reference

van ‘t Hag, Handschin S, Gschwend PM, Mezzenga R: Light gold: a colloidal approach using latex templates. Advanced Functional Materials. 2020. DOI: 10.1002/adfm.201908458

Media Contact
Raffaele Mezzenga
[email protected]
41-446-329-140

Original Source

https://ethz.ch/en/news-and-events/eth-news/news/2020/01/gold-nugget-made-of-plastic.html

Related Journal Article

http://dx.doi.org/10.1002/adfm.201908458

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesPolymer ChemistryResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
blank

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    75 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genomic Islands Propel ST-131 E. coli Resistance Evolution

Matrine B10 Targets FGFR3 Pathway to Fight Liver Cancer

HOGE: Advancing Masked Face Recognition with Transfer Learning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.