• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ammonia synthesis made easy with 2D catalyst

Bioengineer by Bioengineer
November 25, 2019
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rice University scientists develop inorganic process for small-scale production

IMAGE

Credit: Lou Group/Rice University

HOUSTON – (Nov. 25, 2019) – Rice University researchers have developed an inorganic method to synthesize ammonia that is both environmentally friendly and can produce the valuable chemical on demand under ambient conditions.

The Brown School of Engineering lab of materials scientist Jun Lou manipulated a two-dimensional crystal it understands well — molybdenum disulfide — and turned it into a catalyst by removing atoms of sulfur from the latticelike structure and replacing the exposed molybdenum with cobalt.

This allowed the material to mimic the natural organic process bacteria use to turn atmospheric dinitrogen into ammonia in organisms, including in humans, who use ammonia to help liver function.

The inorganic process will allow ammonia to be produced anywhere it’s needed as a small-scale adjunct to industry, which produces millions of tons of the chemical each year through the inorganic Haber-Bosch process.

The research is described in the Journal of the American Chemical Society.

“The Haber-Bosch process produces a lot of carbon dioxide and consumes a lot of energy,” said co-lead author and Rice graduate student Xiaoyin Tian. “But our process uses electricity to trigger the catalyst. We can get that from solar or wind.”

The researchers already knew that molybdenum disulfide had an affinity to bond with dinitrogen, a naturally occurring molecule of two strongly bonded nitrogen atoms that forms about 78% of Earth’s atmosphere.

Computational simulations by Mingjie Liu, a research associate at Brookhaven National Laboratory, showed replacing some exposed molybdenum atoms with cobalt would enhance the compound’s ability to facilitate dinitrogen’s reduction to ammonia.

Lab tests at Rice showed this was so. The researchers assembled samples of the nanoscale material by growing defective molybdenum disulfide crystals on carbon cloth and adding cobalt. (The crystals are technically 2D but appear as a plane of molybdenum atoms with layers of sulfur above and below.) With current applied, the compound yielded more than 10 grams of ammonia per hour using 1 kilogram of catalyst.

“The scale is not comparable to well-developed industrials processes, but it can be an alternative in specific cases,” said co-lead author Jing Zhang, a postdoctoral researcher at Rice. “It will allow the production of ammonia where there is no industrial plant, and even in space applications.” He said lab experiments used dedicated feeds of dinitrogen, but the platform can as easily pull it from the air.

Lou said other dopants may allow the material to catalyze other chemicals, a topic for future studies. “We thought there was an opportunity here to take something we’re very familiar with and try to do what nature has been doing for billions of years,” he said. “If we design a reactor the right way, the platform can carry out its function without interruption.”

###

Co-authors of the paper are Rice assistant research professor Hua Guo and graduate student Qiyi Fang; Qin Wu of Brookhaven National Laboratory; and Jiadong Zhou and Zheng Liu of Nanyang Technological University, Singapore.

The Welch Foundation and the U.S. Department of Energy Office of Science supported the research.

Read the abstract at https://pubs.acs.org/doi/10.1021/jacs.9b02501.

This news release can be found online at https://news.rice.edu/2019/11/25/ammonia-synthesis-made-easy-with-2d-catalyst/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Lou Group: https://n3lab.rice.edu

Mingjie Liu: https://www.bnl.gov/cfn/people/staff.php?q=219

Rice Department of Materials Science and NanoEngineering: https://msne.rice.edu

George R. Brown School of Engineering: https://engineering.rice.edu

Images for download:

https://news-network.rice.edu/news/files/2019/11/1125_AMMONIA-1-WEB.jpg

Rice University graduate student Xiaoyin Tian, left, and postdoctoral researcher Jing Zhang led the effort to develop an inorganic catalyst for ammonia based on doped, two-dimensional molybdenum disulfide. (Credit: Lou Group/Rice University)

https://news-network.rice.edu/news/files/2019/11/1125_AMMONIA-2-WEB.jpg

Microscope images show cobalt-doped molybdenum disulfide as grown on a carbon cloth. The high-resolution transmission electron microscope image at right reveals the doped nanosheets, which facilitate the efficient electrochemical catalysis of ammonia. The process was developed for small-scale use by materials scientists at Rice University. (Credit: Lou Group/Rice University)

https://news-network.rice.edu/news/files/2019/11/1125_AMMONIA-3-WEB.jpg

The addition of cobalt atoms to fill vacancies in 2D molybdenum disulfide crystals enhances the material’s ability to catalyze ammonia from dinitrogen. Rice University scientists have developed a “green” method for the small-scale synthesis of ammonia that uses less energy and produces less carbon dioxide than industrial processes. (Credit: Lou Group/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Media Contact
Mike Williams
[email protected]
713-348-6728

Original Source

https://news.rice.edu/2019/11/25/ammonia-synthesis-made-easy-with-2d-catalyst/

Related Journal Article

http://dx.doi.org/10.1021/jacs.9b02501

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Rab5 GTPases Direct ROP Signaling for Pollen Polarity

Rab5 GTPases Direct ROP Signaling for Pollen Polarity

October 24, 2025
Engineered Metarhizium Fungi Lure and Kill Mosquitoes

Engineered Metarhizium Fungi Lure and Kill Mosquitoes

October 24, 2025

High Altitude Hypoxia: Erythrocyte Metabolic Changes

October 24, 2025

Non-Thermal Methods Revolutionize Fruit Puree Quality

October 24, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1279 shares
    Share 511 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    184 shares
    Share 74 Tweet 46
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Child-Parent Interaction: Contrasting Effects on Language and Autism

TDP-43 PET Ligands: Advancing Proteinopathy Diagnosis

Rab5 GTPases Direct ROP Signaling for Pollen Polarity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.