• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, September 25, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Amazon dark earth boosts tree growth as much as sixfold

Bioengineer by Bioengineer
August 1, 2023
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A type of soil called terra preta da Amazônia, or Amazon dark earth (ADE), promotes faster growth of trees and enhances their development in qualitative terms, according to an article published in the journal Frontiers in Soil Science. 

Amazon dark earth boosts tree growth as much as sixfold

Credit: Luís Felipe Zagatto/CENA-USP

A type of soil called terra preta da Amazônia, or Amazon dark earth (ADE), promotes faster growth of trees and enhances their development in qualitative terms, according to an article published in the journal Frontiers in Soil Science. 

The findings reported in the article resulted from studies supported by FAPESP (projects 20/08927-0, 18/19000-4 and 14/50320-4) under the aegis of its Biodiversity, Characterization, Conservation, Restoration and Sustainable Use Program (BIOTA). 

“ADE is rich in nutrients and supports communities of microorganisms that help plants grow, among other things. Native people of the Amazon have used ADE to grow food for centuries and don’t need fertilizer for plants,” said Luís Felipe Guandalin Zagatto, a master’s student at the University of São Paulo’s Center for Nuclear Energy in Agriculture (CENA-USP) in Piracicaba, Brazil, and one of the authors of the article.

The researchers found the microbiota (bacteria, archaea, fungi and other microorganisms) in ADE to be highly beneficial to plant growth. Addition of ADE to the soil boosted the growth of the three tree species they analyzed. Seedlings of Brazilian cedarwood (Cedrela fissilis) and Yellow poinciana (Peltophorum dubium) grew to between twice and five times normal height in soil with 20% ADE, and three to six times with 100% ADE, compared with growth in control soil. Ambay pumpwood (Cecropia pachystachya) did not grow at all in control soil (soil without ADE) but flourished in 100% ADE. 

The dry mass of Brachiaria forage grass increased more than threefold in soil with 20% ADE compared with control soil, and by more than a factor of eight in 100% ADE.

“The bacteria in ADE convert certain molecules in the soil into substances that can be absorbed by plants. Using a very rudimentary analogy, you could say the bacteria act as miniature ‘chefs’ by transforming substances that can’t be ‘digested’ by plants into substances they can profitably metabolize,” said Anderson Santos de Freitas, first author of the article. He is a PhD candidate at CENA-USP and co-author of the podcast Biotec em Pauta.

ADE contained more nutrients than the control soil: 30 times more phosphorus, for example, and three to five times more of each of the other nutrients measured, except manganese. It also had a higher pH. 

Zagatto and colleagues collected samples of ADE at the Caldeirão Experimental Field in Amazonas state. The control soil came from experimental croplands maintained by Luiz de Queiroz College of Agriculture (ESALQ-USP) in Piracicaba, São Paulo state. 

They filled 36 four-liter pots with 3 kg of soil each and placed them in a greenhouse with an average temperature of 34 °C, anticipating the impact of global warming, as temperatures in the Amazon currently range from 22° C to 28 °C.

A third of the pots were filled with control soil, a third with a 4:1 mixture of control soil and ADE, and a third with 100% ADE. To mimic pasture, they planted seeds of Brachiaria forage grass (Urochloa brizantha) in every pot, leaving them to sprout for 60 days. They then cut the grass but left the roots, simulating restoration of degraded pasture by sowing seeds of the three tree species. 

Biotech applications

The group does not propose use of ADE as such, Zagatto explained, since it is a finite resource and well protected. The point of their research is to analyze ADE’s chemical properties (nutrients, organic matter and pH) as well as the enzyme activity and other biological and biochemical aspects that benefit plants.

“We need to understand exactly which microorganisms are responsible for these effects, and how we can use them without requiring ADE as such. We can then try, for example, to replicate these characteristics by means of biotech developments. This study was a first step in that direction,” he said.

Deforestation is a serious problem for Brazil, and not only in the Amazon. There are several reasons, such as replacement of forest by pasture or cropland, for example. It is increasingly important to find ways to restore these areas rapidly, so that the forest grows back and ecosystem services resume, with all the benefits they give the environment and human populations, including climate and air quality regulation, as well as carbon storage in the soil.

“In the study, we set out to evaluate a possible driver of improvement for tropical forest ecological restoration projects, more specifically in the Amazon, so that in future these areas can return as near as possible to their original state,” Zagarro said. “We believe these results are promising and show that using the characteristics of ADE in seedling production or even directly in the field can be a way to accelerate tropical forest ecological restoration.”

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at www.fapesp.br/en and visit FAPESP news agency at www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.



Journal

Frontiers in Soil Science

DOI

10.3389/fsoil.2023.1161627

Article Title

Amazonian dark earths enhance the establishment of tree species in forest ecological restoration

Article Publication Date

5-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

S Texas parrots

Texas A&M researchers show endangered parrot species is thriving in urban areas

September 22, 2023
Wildlife mitigating measures no help for Ottawa’s freshwater turtles

Wildlife mitigating measures no help for Ottawa’s freshwater turtles

September 22, 2023

Jellyfish are smarter than you think

September 22, 2023

Jellyfish shown to learn from past experience for the first time

September 22, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    58 shares
    Share 23 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    34 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Researchers pioneer safe chemotherapy methods for treating bacterial infections

ETRI unveiled hyper-realistic technologies for the metaverse world

Global study provides new insights into barriers to effective cardiovascular rehabilitation for women and why women are less likely to participate

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 57 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In