• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Alzheimer’s may be linked to defective brain cells spreading disease

Bioengineer by Bioengineer
February 10, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rutgers scientists say neurodegenerative diseases like Alzheimer's and Parkinson's may be linked to defective brain cells disposing toxic proteins that make neighboring cells sick.

In a study published in Nature, Monica Driscoll, distinguished professor of molecular biology and biochemistry, School of Arts and Sciences, and her team, found that while healthy neurons should be able to sort out and rid brain cells of toxic proteins and damaged cell structures without causing problems, laboratory findings indicate that it does not always occur.

These findings, Driscoll said, could have major implications for neurological disease in humans and possibly be the way that disease can spread in the brain.

"Normally the process of throwing out this trash would be a good thing," said Driscoll. "But we think with neurodegenerative diseases like Alzheimer's and Parkinson's there might be a mismanagement of this very important process that is supposed to protect neurons but, instead, is doing harm to neighbor cells."

Driscoll said scientists have understood how the process of eliminating toxic cellular substances works internally within the cell, comparing it to a garbage disposal getting rid of waste, but they did not know how cells released the garbage externally.

"What we found out could be compared to a person collecting trash and putting it outside for garbage day," said Driscoll. "They actively select and sort the trash from the good stuff, but if it's not picked up, the garbage can cause real problems."

Working with the transparent roundworm, known as the C. elegans, which are similar in molecular form, function and genetics to those of humans, Driscoll and her team discovered that the worms – which have a lifespan of about three weeks — had an external garbage removal mechanism and were disposing these toxic proteins outside the cell as well.

IIiya Melentijevic, a graduate student in Driscoll's laboratory and the lead author of the study, realized what was occurring when he observed a small cloud-like, miniscule blob forming outside of the cell in some of the worms.

"In most cases, you couldn't see it for long but in a small number of instances, it was like a cloud that accumulated outside the neuron and just stayed there," said Melentijevic, who spent three nights in the lab taking photos of the process viewed through a microscope every 15 minutes.

Research using roundworms has provided scientists with important information on aging, which would be difficult to conduct in people and other organisms that have long life spans.

In the newly published study, the Rutgers team found that roundworms engineered to produce human disease proteins associated with Huntington's disease and Alzheimer's, threw out more trash consisting of these neurodegenerative toxic materials. While neighboring cells degraded some of the material, more distant cells scavenged other portions of the diseased proteins.

"These finding are significant," said Driscoll. The work in the little worm may open the door to much needed approaches to addressing neurodegeneration and diseases like Alzheimer's and Parkinson's."

###

Media Contact

Robin Lally
[email protected]
973-270-3706
@RutgersU

http://www.rutgers.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

LED Light Targets and Destroys Cancer Cells While Protecting Healthy Tissue

October 10, 2025
Upcoming Release: The Journal of Nuclear Medicine Ahead-of-Print Highlights – October 10, 2025

Upcoming Release: The Journal of Nuclear Medicine Ahead-of-Print Highlights – October 10, 2025

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

New Tool Enables Single-Cell Analysis of Specific Genetic Variants

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1195 shares
    Share 477 Tweet 298
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    83 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LED Light Targets and Destroys Cancer Cells While Protecting Healthy Tissue

Upcoming Release: The Journal of Nuclear Medicine Ahead-of-Print Highlights – October 10, 2025

Wirth Named Fellow of the American Physical Society

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.