• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Alzheimer’s may be linked to defective brain cells spreading disease

Bioengineer by Bioengineer
February 10, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rutgers scientists say neurodegenerative diseases like Alzheimer's and Parkinson's may be linked to defective brain cells disposing toxic proteins that make neighboring cells sick.

In a study published in Nature, Monica Driscoll, distinguished professor of molecular biology and biochemistry, School of Arts and Sciences, and her team, found that while healthy neurons should be able to sort out and rid brain cells of toxic proteins and damaged cell structures without causing problems, laboratory findings indicate that it does not always occur.

These findings, Driscoll said, could have major implications for neurological disease in humans and possibly be the way that disease can spread in the brain.

"Normally the process of throwing out this trash would be a good thing," said Driscoll. "But we think with neurodegenerative diseases like Alzheimer's and Parkinson's there might be a mismanagement of this very important process that is supposed to protect neurons but, instead, is doing harm to neighbor cells."

Driscoll said scientists have understood how the process of eliminating toxic cellular substances works internally within the cell, comparing it to a garbage disposal getting rid of waste, but they did not know how cells released the garbage externally.

"What we found out could be compared to a person collecting trash and putting it outside for garbage day," said Driscoll. "They actively select and sort the trash from the good stuff, but if it's not picked up, the garbage can cause real problems."

Working with the transparent roundworm, known as the C. elegans, which are similar in molecular form, function and genetics to those of humans, Driscoll and her team discovered that the worms – which have a lifespan of about three weeks — had an external garbage removal mechanism and were disposing these toxic proteins outside the cell as well.

IIiya Melentijevic, a graduate student in Driscoll's laboratory and the lead author of the study, realized what was occurring when he observed a small cloud-like, miniscule blob forming outside of the cell in some of the worms.

"In most cases, you couldn't see it for long but in a small number of instances, it was like a cloud that accumulated outside the neuron and just stayed there," said Melentijevic, who spent three nights in the lab taking photos of the process viewed through a microscope every 15 minutes.

Research using roundworms has provided scientists with important information on aging, which would be difficult to conduct in people and other organisms that have long life spans.

In the newly published study, the Rutgers team found that roundworms engineered to produce human disease proteins associated with Huntington's disease and Alzheimer's, threw out more trash consisting of these neurodegenerative toxic materials. While neighboring cells degraded some of the material, more distant cells scavenged other portions of the diseased proteins.

"These finding are significant," said Driscoll. The work in the little worm may open the door to much needed approaches to addressing neurodegeneration and diseases like Alzheimer's and Parkinson's."

###

Media Contact

Robin Lally
[email protected]
973-270-3706
@RutgersU

http://www.rutgers.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Exposure Science 2024: Health Risks to Vulnerable Groups

November 3, 2025
Dr. Xin Jin Awarded 2026 Peter Gruss Young Investigator Prize

Dr. Xin Jin Awarded 2026 Peter Gruss Young Investigator Prize

November 3, 2025

Gender Differences in Hamster Hypertension and Kidney Damage

November 3, 2025

Co-Designing Regional Bronchiolitis Treatment Platform

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exposure Science 2024: Health Risks to Vulnerable Groups

Dr. Xin Jin Awarded 2026 Peter Gruss Young Investigator Prize

Gender Differences in Hamster Hypertension and Kidney Damage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.