• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, July 1, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Alzheimer’s disease: an alternative hypothesis based on synaptic alterations

Bioengineer by Bioengineer
January 25, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research published today in Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association could explain why neurons fail to communicate effectively in people with Alzheimer’s disease (AD). The study conducted by researchers in the laboratory of Christophe Mulle at the Interdisciplinary Institute of Neuroscience in Bordeaux1 opens a new research path to establish the molecular mechanism causing AD.

Human hippocampal brain section

Credit: © Gael Barthet

New research published today in Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association could explain why neurons fail to communicate effectively in people with Alzheimer’s disease (AD). The study conducted by researchers in the laboratory of Christophe Mulle at the Interdisciplinary Institute of Neuroscience in Bordeaux1 opens a new research path to establish the molecular mechanism causing AD.

 

Despite intense efforts in clinical research, there is no treatment to cure or even slow down the progression of AD. Current clinical interventions are typically based on the ‘amyloid cascade’ hypothesis, postulating that neurodegeneration in AD is caused by the abnormal accumulation of amyloid plaques in the brain. However, these interventions have failed to demonstrate clinical efficacy. Recently, the European Medicines Agency did not approve a controversial new drug for AD that targets plaques, concluding that the benefits do not outweigh the risks. The decision leaves an estimated 8 million people living with dementia in the EU with no treatment options, highlighting the urgent need for an alternative target for AD research.

 

The new study reveals that the amyloid peptide composing the plaques is not the only offender accumulating in the human AD brain. Its precursor, the amyloid precursor protein (APP), was found to surround amyloid plaques in intense microscopic staining.

 

“Remarkably, our research revealed that the areas of the brain where APP accumulates, contain abnormal amounts of proteins essential for the communication between neurons,” said Dr Gael Barthet senior author on the paper, now Director of Neuroscience at the Wyss Center.

 

The communication between neurons occurs at junctions called synapses where neurotransmitters released by a pre-synaptic neuron cross the junction to activate a post-synaptic neuron.

 

“What we found fascinating was that APP accumulated with excess of presynaptic proteins whereas post-synaptic proteins where depleted, indicating severe impairment of neuronal communication at these sites,” said Dr Tomas Jorda, lead author of the paper and Post-Doctoral Research Associate in neurobiology at the University of Geneva.

 

“The new findings introduce a new direction for us to explore using our innovative, multi-scale, multi-modal approach at the Center,” said Dr Richie Kohman, Chief Scientific Officer at the Wyss Center.

 

The Wyss Center’s translational research on neurodegenerative diseases uses novel molecular labelling techniques coupled with advanced microscopy and data analysis tools to examine specific neuronal populations, synaptic markers, and single-cell transcriptomics in the human brain. These innovative imaging approaches enable the study of the human brain in large sections or even in entire 3D samples. The Wyss Center is using this pipeline to investigate the molecular mechanisms at play in neurological and psychiatric disorders, to establish early biomarkers and identify new therapeutic targets.

 

The paper, ‘APP accumulates with presynaptic proteins around amyloid plaques: a role for presynaptic mechanisms in Alzheimer’s disease?’ is published in Alzheimer’s & Dementia 2022 DOI: 10.1002/alz.12546

 

ENDS

 

Research contacts: 

Gael Barthet

Director of Neuroscience

[email protected]

+41 58 201 03 67

Wyss Center for Bio and Neuroengineering

Chemin des Mines 9, 1202 Geneva, Switzerland

 

1 Christophe Mulle
Research Director at CNRS

[email protected]

Team ‘Synaptic Circuits of Memory’
Interdisciplinary Institute for Neuroscience, CNRS
Université de Bordeaux

Bordeaux France

 

 

About the Wyss Center for Bio and Neuroengineering, Geneva, Switzerland

The Wyss Center is an independent, non-profit research and development organization that advances our understanding of the brain to realize therapies and improve lives. 

The Wyss Center staff, together with the Center’s academic, clinical and industrial collaborators, pursue innovations and new approaches in neurobiology, neuroimaging and neurotechnology.

Wyss Center advances reveal unique insights into the mechanisms underlying the dynamics of the brain and the treatment of disease to accelerate the development of devices and therapies for unmet medical needs.

The Wyss Center was established by a generous donation from the Swiss entrepreneur and philanthropist Hansjörg Wyss in 2014. Additional resources from funding agencies and other sources help the Wyss Center accelerate its mission.

www.wysscenter.ch/

 

Media contact

Wyss Center

Jo Bowler, Media and Public Relations Manager

+41 (0) 58 201 03 09

[email protected]

 



DOI

10.1002/alz.12546

Method of Research

Imaging analysis

Subject of Research

Human tissue samples

Article Title

APP accumulates with presynaptic proteins around amyloid plaques: a role for presynaptic mechanisms in Alzheimer’s disease?

Article Publication Date

25-Jan-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

The large polyps of Galaxea fascicularis (also known as galaxy coral) resemble a starburst tipped in white

Coral pathogen kills competitors in coral microbiota via prophage induction

July 1, 2022
p62/SQSTM1, a protein receptor for selective autophagy, plays a neuroprotective role in mouse models of dementia

Protecting the brain from dementia-inducing abnormal protein aggregates

July 1, 2022

Whales learn songs from each other in a cultural ‘deep dive’

July 1, 2022

Birds warned of food shortages by neighbor birds change physiology and behavior to prepare

July 1, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    35 shares
    Share 14 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Mapping the ‘energy fingerprints’ of lung cancer leads to fundamental treatment rethink

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesUrbanizationViolence/CriminalsUniversity of WashingtonVaccineWeaponryVirusZoology/Veterinary ScienceUrogenital SystemVirologyVehiclesWeather/Storms

Recent Posts

  • Monkeypox virus on surfaces: no proof that contact can cause infection
  • HKUST develops world’s most durable hydrogen fuel cell
  • Prestigious NSF funding will enable UTSA professor to further demystify body’s metabolic processes
  • When ASD occurs with intellectual disability, a convergent mechanism for two top-ranking risk genes may be the cause
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....