• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Alterations detected in brain connectivity in patients with type 1 diabetes

Bioengineer by Bioengineer
December 19, 2018
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study carried out by the UB shows the patients’ brain adapts to cognitive changes caused by the disease

IMAGE

Credit: UB


Patients with Type 1 Diabetes (T1D) have a brain connectivity network different from the healthy people, according to a new study led by researchers of the Institute of Neurosciences and the Institute of Complex Systems (UBICS) of the University of Barcelona. This confirmation, reached with neuroimaging techniques and statistical models applied to complex systems, reinforce the idea that these patients’ brains develop a series of functional changes to adapt to cognitive alterations caused by this disease. These results could have potential implications in the diagnosis of diabetes and the study of other disorders with cognitive alterations.

The study, published in the science journal PLOS ONE, involves the participation of Joan Guàrdia and Maribel Peró Cebollero, from the Faculty of Psychology of the UB, Geisa Gallardo and Andrés González from the University of Guadalajara (Mexico), and Esteve Gudayol, from the Michoacan University of Saint Nicholas of Hidalgo (Mexico).

The study has explored -with magnetic resonance imaging techniques (fMRI)- the activation pattern for brain connectivity in fifteen patients with Type 1 Diabetes and a control group of fifteen healthy people while they carried out working memory tasks with visual stimuli. The neuroimaging technique measures the brain activity during the tasks thanks to the changes in the blood flux that take place in the brain depending on the areas with a higher energy use.

Adaptive mechanisms in the brain

The results of the working memory tasks were similar, but the analysis of brain connections showed important differences between the two participating groups. According to the authors, “patients with T1D showed a significant reduction of activation areas in the brain, compared to the control group, which showed a more complex connectivity network”. Moreover, the connectivity pattern in T1D patients affected the cerebellum and the red nucleus mainly. However, the control group involved other brain areas which activate when individuals carry out working memory tasks”. These results on the neuronal connections complete previous studies by the same team of researchers which showed different activation patterns in specific brain areas.

“These changes, and the fact that the results of the analysed tasks are similar, mean that the brain creates compensation mechanisms to fulfil cognitive demands which favour a better functioning”, notes Joan Guàrdia, professor of Psychology and first signer of the article. “Also, these data show that adaptations can be important, since T1D patients develop connectivity networks which are very different from healthy people”.

A methodology to explore other diseases

The analysis of differences in brain connectivity networks opens new study pathways for other population groups -pathological and healthy ones. “This study enabled us to show that a complex network can characterize the cognitive performance in a differentiating task between groups. At the moment, we are working on the methodology that was used in this study with patients with Mild Cognitive Impairment, people with depression and other collectives with cognitive alterations”, notes Joan Guàrdia.

Cognitive alterations in Type 1 Diabetes

T1D is a chronic disease caused by the lack of insulin production, the hormone that regulates sugar in blood. This type of diabetes forces patients to take insulin daily and is an important cause for blindness, kidney failure, heart attack, and other complications. Apart from these disorders, some patients can show a mild cognitive impairment which affects memory, measuring information processing speed, verbal skills, learning and executive functions, including working memory in children and adults.

###

Reference

Guàrdia-Olmos, J.; Gudayol-Ferré, E.; Gallardo-Moreno, GB.; Martínez-Ricart, M.; Peró-Cebollero, M.; González-Garrido A. A “Complex systems representing effective connectivity in patients with Type One Diabetes Mellitus”. PLOS ONE 13(11). November 2018. DOI: e0208247. https://doi.org/10.1371/journal.pone.0208247

Media Contact
Bibiana Bonmatí
[email protected]
34-934-035-544

Original Source

https://www.ub.edu/web/ub/en/menu_eines/noticies/2018/12/026.html

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0208247

Tags: DiabetesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Acidic Tumors Drive Migratory, Senescent Melanoma Cells

October 20, 2025

Optimizing Immune Profiling Protocols for Parkinson’s Disease

October 20, 2025

Mitochondrial One-Carbon Metabolism Drives Fibrosis via Glycine

October 20, 2025

Gut Microbiome Boosts Brain Mitochondria in Parkinson’s

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1266 shares
    Share 506 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    299 shares
    Share 120 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    127 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Genetic Biomarkers Discovered for Sperm Dysfunction

Radiomics and 3D Deep Learning Predict Pancreatic Cancer

Acidic Tumors Drive Migratory, Senescent Melanoma Cells

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.