• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Alterations detected in brain connectivity in patients with type 1 diabetes

Bioengineer by Bioengineer
December 19, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study carried out by the UB shows the patients’ brain adapts to cognitive changes caused by the disease

IMAGE

Credit: UB


Patients with Type 1 Diabetes (T1D) have a brain connectivity network different from the healthy people, according to a new study led by researchers of the Institute of Neurosciences and the Institute of Complex Systems (UBICS) of the University of Barcelona. This confirmation, reached with neuroimaging techniques and statistical models applied to complex systems, reinforce the idea that these patients’ brains develop a series of functional changes to adapt to cognitive alterations caused by this disease. These results could have potential implications in the diagnosis of diabetes and the study of other disorders with cognitive alterations.

The study, published in the science journal PLOS ONE, involves the participation of Joan Guàrdia and Maribel Peró Cebollero, from the Faculty of Psychology of the UB, Geisa Gallardo and Andrés González from the University of Guadalajara (Mexico), and Esteve Gudayol, from the Michoacan University of Saint Nicholas of Hidalgo (Mexico).

The study has explored -with magnetic resonance imaging techniques (fMRI)- the activation pattern for brain connectivity in fifteen patients with Type 1 Diabetes and a control group of fifteen healthy people while they carried out working memory tasks with visual stimuli. The neuroimaging technique measures the brain activity during the tasks thanks to the changes in the blood flux that take place in the brain depending on the areas with a higher energy use.

Adaptive mechanisms in the brain

The results of the working memory tasks were similar, but the analysis of brain connections showed important differences between the two participating groups. According to the authors, “patients with T1D showed a significant reduction of activation areas in the brain, compared to the control group, which showed a more complex connectivity network”. Moreover, the connectivity pattern in T1D patients affected the cerebellum and the red nucleus mainly. However, the control group involved other brain areas which activate when individuals carry out working memory tasks”. These results on the neuronal connections complete previous studies by the same team of researchers which showed different activation patterns in specific brain areas.

“These changes, and the fact that the results of the analysed tasks are similar, mean that the brain creates compensation mechanisms to fulfil cognitive demands which favour a better functioning”, notes Joan Guàrdia, professor of Psychology and first signer of the article. “Also, these data show that adaptations can be important, since T1D patients develop connectivity networks which are very different from healthy people”.

A methodology to explore other diseases

The analysis of differences in brain connectivity networks opens new study pathways for other population groups -pathological and healthy ones. “This study enabled us to show that a complex network can characterize the cognitive performance in a differentiating task between groups. At the moment, we are working on the methodology that was used in this study with patients with Mild Cognitive Impairment, people with depression and other collectives with cognitive alterations”, notes Joan Guàrdia.

Cognitive alterations in Type 1 Diabetes

T1D is a chronic disease caused by the lack of insulin production, the hormone that regulates sugar in blood. This type of diabetes forces patients to take insulin daily and is an important cause for blindness, kidney failure, heart attack, and other complications. Apart from these disorders, some patients can show a mild cognitive impairment which affects memory, measuring information processing speed, verbal skills, learning and executive functions, including working memory in children and adults.

###

Reference

Guàrdia-Olmos, J.; Gudayol-Ferré, E.; Gallardo-Moreno, GB.; Martínez-Ricart, M.; Peró-Cebollero, M.; González-Garrido A. A “Complex systems representing effective connectivity in patients with Type One Diabetes Mellitus”. PLOS ONE 13(11). November 2018. DOI: e0208247. https://doi.org/10.1371/journal.pone.0208247

Media Contact
Bibiana Bonmatí
[email protected]
34-934-035-544

Original Source

https://www.ub.edu/web/ub/en/menu_eines/noticies/2018/12/026.html

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0208247

Tags: DiabetesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Develop “Evolution Engine” to Accelerate Protein Reprogramming

Scientists Develop “Evolution Engine” to Accelerate Protein Reprogramming

August 8, 2025
blank

Autoantibodies Trigger Sensory Neuron Pain in Rats

August 8, 2025

New Clue: Odorant Protein Fibrils Cause Smell Loss

August 8, 2025

Toe Transfer Surgery Shows Promise in Enhancing Recovery After Finger Amputation

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    51 shares
    Share 20 Tweet 13
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Eco-Friendly ZIF-7 Carbon for Sensitive Rhodamine B Detection

Deep Learning Model Enhances Detecting Brain Hemorrhage

Scientists Develop “Evolution Engine” to Accelerate Protein Reprogramming

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.