• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, February 5, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

ALS study reveals a unique population

Bioengineer by Bioengineer
January 19, 2021
in Health
Reading Time: 3 mins read
1
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists discover that ALS patients in Malta do not have flaws in major ALS genes

IMAGE

Credit: Source: Jonathan Borg, Times of Malta

Malta, a sovereign microstate in the middle of the Mediterranean Sea, has no shortage of sunny beaches, honey-bricked villages and rugged countryside. Beyond its Mediterranean charm, Malta is home to a geographically and culturally isolated population whose unique genetic makeup, makes this island nation a goldmine for genetics research.

Four years ago, the University of Malta set up a national ALS Registry and Biobank to identify patients with amyotrophic lateral sclerosis (ALS) and collect data on their residence, occupation, lifestyle and environmental exposures. Blood samples donated by participants will remain stored in high-tech storage facilities at the University over many years.

ALS is a progressive neurological disease that destroys the nerves that interact with the body’s muscles. The disease typically leads to complete paralysis of the body, robbing patients of their ability to walk, speak, eat and breathe. There is no cure for ALS, and eventually, the disease is fatal.

Malta’s ALS Biobank is providing scientists with an invaluable resource for understanding the causes of ALS. In the first landmark study, researchers have retrieved and scrutinised the DNA from blood samples to discover flaws in genes linked to ALS.

“The DNA results caught us by surprise. The most frequently mutated ALS genes were flawless in Maltese patients,” said the study’s lead researcher Dr Ruben J. Cauchi, PhD, a senior lecturer at the University’s School of Medicine and lead investigator at the University’s Centre for Molecular Medicine and Biobanking.

Collaborating with scientists at the University Medical Centre (UMC) Utrecht in The Netherlands, University of Malta researchers found that ALS patients in Malta did not have flaws in the C9orf72, SOD1, TARDBP and FUS genes, which are known to contribute to a major number of ALS cases worldwide.

The study nonetheless revealed that compared to other European populations, a higher percentage of Maltese patients with no prior family history of ALS have harmful flaws in their DNA. Intriguingly, these occur in genes that are rarely damaged in Europeans with ALS.

“Our results underscore the unique genetics of the Maltese population, shaped by centuries of relative isolation. We also established that genetic factors play a significant role in causing ALS in Malta,” added Dr Cauchi.

Right now, the research team is on the hunt for what triggers ALS in more than half of the study subjects that had no flaws in known ALS genes. Thanks to the participation of patients and healthy volunteers, Malta’s ALS Biobank is rapidly growing into a precious treasure trove of data that is expected to unveil more fascinating insights on the causes of ALS in the years to come.

###

Study co-authors are Rebecca Borg, Maia Farrugia Wismayer, Dr Karl Bonavia, Dr Andrew Farrugia Wismayer and Prof Neville Vassallo from the University of Malta; Dr Malcolm Vella from Mater Dei Hospital; and Dr Joke J.F.A. van Vugt, Dr Brendan J. Kenna, Dr Kevin P. Kenna, and Prof Jan H. Veldink from UMC Utrecht.

The study was funded by the University of Malta Research Excellence Fund, an Endeavour Scholarship (part-financed by the European Social Fund), an EMBO fellowship, a Malta Council for Science & Technology Internationalisation Partnership Award, ALS Malta Foundation and the University of Malta’s Research Trust (RIDT).

Media Contact
Dr Ruben J. Cauchi
[email protected]

Original Source

https://www.um.edu.mt/newspoint/news/2021/01/als-breakthrough-study

Related Journal Article

http://dx.doi.org/10.1038/s41431-020-00767-9

Tags: BiologyGenesGeneticsMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Geriatric In-Home Deaths: Insights from Autopsy Findings

February 5, 2026

Leadership’s Impact on Allied Health Professional Identity

February 5, 2026

Regular Family Dinners May Lower Substance Use Risk in Adolescents, Study Finds

February 5, 2026

Two-Step Voltage Sensor Activation in KV7.4 Channel

February 5, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sudanese Copts Evolve Rapid Resistance to Malaria Through Accelerated Evolutionary Process

IRF5’s Role in Emphysema via NLRP3 and Ly6C Cells

Free Halide Ions Enable Switchable Photoluminescence

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.