• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Alpine plants are losing their white “protective coat”

Bioengineer by Bioengineer
April 16, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo: Lawrence Blem

Snow cover in the Alps has been melting almost three days earlier per decade since the 1960s. This trend is temperature-related and cannot be compensated by heavier snowfall. By the end of the century, snow cover at 2,500 meters could disappear a month earlier than today, as simulations by environmental scientists at the University of Basel demonstrate.

Global warming demands huge adjustments in tourism, hydropower generation and agriculture in alpine areas. But the fauna and flora also have to adapt to rising temperatures. By the end of the century, continuous snow cover for 30 days below 1,600 meters is expected to be a rare occurrence. “Snow cover protects alpine plants from frost and the growing season begins after the snowmelt. Changes in the snowmelt have a very strong influence on this period,” explains Dr. Maria Vorkauf of the Department of Environmental Sciences at the University of Basel. She researched alpine plant physiology intensively for her doctoral dissertation.

New measurements at high elevations

In a new study, Vorkauf and colleagues at the University of Basel and the Institute for Snow and Avalanche Research investigated how the date of snowmelt has changed in recent decades and what shifts can be expected by the end of the 21st century. For a long time, only a few measurement series of snow cover at high elevations were available, as measurements were usually only made near inhabited regions below 2,000 meters. This changed with the IMIS measurement network, which went into operation in 2000. It automatically records the snow depth between 2,000 and 3,000 meters every half hour. The researchers combined this data with measurement series from 23 lower-lying stations with manual measurements going back to at least 1958.

Analysis of the data showed that between 1958 and 2019, snow cover between 1,000 and 2,500 meters melted an average of 2.8 days earlier every decade. This shift was not linear, but was particularly strong in the late 1980s and early 1990s. This corresponds to strong temperature increases in this time period that have been verified by climate research.

Simulation of the alpine future

Based on the analyzed measurements, the researchers developed a model that makes it possible to forecast the future development of alpine snow cover. They combined their data with the latest climate scenarios for Switzerland. If greenhouse gas emissions continue to rise as they have so far, without consistent climate protection measures, the date of snowmelt in the last third of the 21st century is likely to move forward by six days per decade. This means that by the end of the century, snowmelt at 2,500 meters elevation would occur about one month earlier than today.

The research also showed that the earlier snowmelt at high elevations cannot be compensated for by greater precipitation in the winter, as is predicted by climate models for Switzerland. “As soon as the three-week running mean of daily air temperatures exceeds 5 °C, snow melts relatively quickly,” explains Vorkauf. “At high elevations in particular, temperature is much more important than the depth of the snow cover.”

Earlier flowering and higher frost risk

In the future, the early snowmelt could extend the growing season of alpine plants by about a third. As is known from studies of other alpine plant species, an earlier start to the growing season leads to fewer flowers, less leaf growth and a lower survival rate due to the higher risk of frost. “Some species such as the Alpine sedge, which is typical of alpine grasslands, will grow and flower earlier because of the early snowmelt,” says Vorkauf.

Although temperatures in alpine areas are rising faster, alpine plant species are not more strongly affected by climate change than those at other elevations. “The topography and exposure of alpine terrain creates very diverse microclimates on a small scale. Within these, plants can retreat over short distances at the same elevation,” Vorkauf explains. As a result, alpine plant species do not have to “flee” to the heights, as is often assumed.

###

Media Contact
Reto Caluori
[email protected]

Original Source

https://www.unibas.ch/en/News-Events/News/Uni-Research/Alpine-plants-are-losing-their-white-protective-coat.html

Related Journal Article

http://dx.doi.org/10.1007/s10584-021-03027-x

Tags: Atmospheric ScienceClimate ChangeClimate ScienceEcology/EnvironmentTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Stem Development in Camphora officinarum

Unveiling Stem Development in Camphora officinarum

November 29, 2025
Flying Squirrels: Cranial Adaptations Across Biomes

Flying Squirrels: Cranial Adaptations Across Biomes

November 29, 2025

Uncovering AGT Gene Links to Hypertension in Iranians

November 29, 2025

Key Protein Essential for Honey Bee Smell

November 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Topical Melatonin Boosts Healing of Diabetic Foot Ulcers

Exploring Traditional Plant Remedies in Menz Keya Gebreal

Exploring Naming Equity in Perinatal Substance Use Policy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.