• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

All-optical diffractive neural networks process broadband light

Bioengineer by Bioengineer
December 4, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Ozcan Research Group, UCLA


Diffractive deep neural network is an optical machine learning framework that blends deep learning with optical diffraction and light-matter interaction to engineer diffractive surfaces that collectively perform optical computation at the speed of light. A diffractive neural network is first designed in a computer using deep learning techniques, followed by the physical fabrication of the designed layers of the neural network using e.g., 3D printing or lithography. Since the connection between the input and output planes of a diffractive neural network is established via diffraction of light through passive layers, the inference process and the associated optical computation does not consume any power except the light used to illuminate the object of interest.

Developed by researchers at UCLA, diffractive optical networks provide a low power, low latency and highly-scalable machine learning platform that can find numerous applications in robotics, autonomous vehicles, defense industry, among many others. In addition to providing statistical inference and generalization to classes of data, diffractive neural networks have also been used to design deterministic optical systems such as a thin imaging system.

In these earlier demonstrations, diffractive networks models were developed to process information through a single wavelength and therefore required a monochromatic and coherent illumination source, unlike for example the ambient light which is incoherent and composed of a continuum of wavelengths, making it broadband. Addressing this limitation, UCLA researchers have designed diffractive networks that can process information using a continuum of wavelengths, expanding this all-optical computation framework into broadband optical signals. Published in Light: Science & Applications, a journal of the Springer Nature, UCLA researchers demonstrated the success of this new framework by creating a series of optical components that filter broadband input light into desired sub-bands. These deep learning-based diffractive systems also control the precise location of each filtered band of radiation at the output plane, demonstrating spatially-controlled wavelength de-multiplexing in terahertz (THz) part of the electromagnetic spectrum.

After their design in a computer, these broadband diffractive networks were fabricated with a 3D-printer and tested using a pulsed THz source emitting a continuum of wavelengths between 60 and 3,000 micrometers. The experimental results obtained with these 3D-printed diffractive networks showed a very good agreement with their corresponding numerical designs, highlighting the experimental robustness of broadband diffractive optical networks.

This research was led by Dr. Aydogan Ozcan, UCLA Chancellor’s Professor of electrical and computer engineering (ECE) and associate director of the California NanoSystems Institute (CNSI). The other authors of this work are graduate students Yi Luo, Deniz Mengu, Muhammed Veli, post-doctoral researcher Dr. Nezih T. Yardimci, Adjunct Professor Dr. Yair Rivenson, as well as Professor Mona Jarrahi, all with the ECE department at UCLA.

“Simultaneously analyzing and processing light across many wavelengths present unique opportunities to enhance the inference and generalization capabilities of diffractive optical networks to perform machine learning tasks such as all-optical object recognition, as well as to design deterministic and task-specific optical components, expanding the optical design space beyond the human intuition” said Prof. Ozcan.

This new method is also broadly applicable to different parts of the electromagnetic spectrum, including the visible band, and thus, represents a critical milestone for diffractive optical networks toward their widespread utilization in modern day optical components and machine learning systems, covering a wide range of applications in for example robotics, autonomous vehicles and surveillance.

###

Link to the paper: https://www.nature.com/articles/s41377-019-0223-1

Media Contact
Aydogan Ozcan
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-019-0223-1

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025
Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

November 5, 2025

New Lightning Forecasting Technology Aims to Safeguard Future Aircraft

November 4, 2025

New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of RISE Program on Contraceptive Equity in Uganda

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

Novel Asymmetric Stress Techniques Enhance Dislocation Density in Brittle Superconductors for Improved Vortex Pinning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.