• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Algae as living biocatalysts for a green industry

Bioengineer by Bioengineer
July 2, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: RUB, Marquard

Better still: living algae can be used as biocatalysts for certain substances, and they bring the co-substrate along, producing it in an environmentally friendly manner through photosynthesis. The team published its report in Algal Research on 17. June 2020.

It’s a question of 3D structure

Many chemical substances in cosmetics, food or medicines can assume slightly different three-dimensional structures, with only one of them generating the desired fragrance or medical effect. The chemical production of the right substances is often not environmentally friendly, as it requires high temperatures or special solvents. In nature, however, certain proteins do exist that produce the required product at mild temperatures and in water. In the process, they often generate exactly the 3D structure of the substance that is needed by the industry.

These so-called old yellow enzymes, OYEs for short, owe their name to their naturally yellow colour. They occur in bacteria, fungi and plants, are in part well studied and offer considerable potential for a bio-based economy. However, they have one disadvantage: in order to carry out their reaction, they need the co-substrate NADPH (nicotinamide adenine dinucleotide phosphate). In living cells, this small molecule is generated through metabolic processes, whereas its chemical production is very expensive; as a result, the commercial use of OYEs is thwarted.

OYEs from unicellular green algae: two birds with one stone

The research team from Bochum has discovered several OYEs in unicellular green algae. “For a broad application, industry needs OYEs that can also produce unusual molecules,” explains Professor Thomas Happe, Head of the Photobiotechnology research group at RUB. “Algae possess very complex metabolic pathways and are therefore ideal sources for novel biocatalysts.” The researchers analysed algal OYEs in the test tube and showed that they are able to convert many commercially viable substances. “The exciting thing is that living algae can also carry out the reactions needed in the industry,” points out PhD student Stefanie Böhmer, lead author of the study. “Since algae produce NADPH using photosynthesis, i.e. with sunlight, the co-substrate of the OYEs is supplied in an environmentally friendly and cost-effective way.”

Promising collaboration

The authors point out that the study demonstrates the importance of the collaboration between researchers from different disciplines, and that the industry can be a valuable partner who initiates basic research. Four researches from the Research Training Group “Micon – Microbial substrate conversion”, which is funded by the German Research Foundation, contributed their expertise to the study. The project was the brainchild of Solarbioproducts Ruhr, a spin-off established by Wirtschaftsförderungsgesellschaft Herne and Thomas Happe with the aim of developing concepts for environmentally friendly algae biotechnologies. “We have taken a big step towards a green industry,” concludes Happe. “This would not have been possible without collaboration.”

###

Funding

The study was funded by the German Research Foundation in the Research Training Group GRK 2341 Microbial Substrate Conversion Micon, the Chembiocat project funded by the Ministry of Innovation, Science and Research NRW, and Wirtschaftsförderungsgesellschaft Herne.

Original publication

Stefanie Böhmer, Christina Marx, Álvaro Gómez-Baraibar, Marc M. Nowaczyk, Dirk Tischler, Anja Hemschemeier, Thomas Happe: Evolutionary diverse Chlamydomonas reinhardtii old yellow enzymes reveal distinctive catalytic properties and potential for whole-cell biotransformations, in: Algal Research, 2020, DOI: 10.1016/j.algal.2020.101970

Press contact

Prof. Dr. Thomas Happe

Photobiotechnologiey

Faculty of Biology and Biotechnology

Ruhr-Universität Bochum

Germany

Phone: +49 234 32 27026

Email: [email protected]

Media Contact
Thomas Happe
[email protected]

Original Source

https://news.rub.de/english/press-releases/2020-07-02-biotechnology-algae-living-biocatalysts-green-industry

Related Journal Article

http://dx.doi.org/10.1016/j.algal.2020.101970

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnology
Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Cancer Immunotherapy by Targeting DNA Repair

December 3, 2025
blank

Evaluating eGFR Equations in Chinese Children

December 3, 2025

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

December 3, 2025

Botanical Extracts’ Antibacterial Activity Boosted by Enhancers

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.