• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Airborne laser scanning of gaps in Amazon rainforest helps explain tree mortality

Bioengineer by Bioengineer
April 13, 2021
in Science News
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The researchers concluded that water stress, soil fertility and human-induced forest degradation cause gaps in the world’s largest tropical forest

IMAGE

Credit: Ricardo Dal’Agnol/INPE

A group of researchers led by Brazilians has used an innovative model to map gaps in the Amazon rainforest and identify factors that contribute to tree mortality.  Water stress, soil fertility, and anthropic forest degradation have the most influence on gap dynamics in the world’s largest and most biodiverse tropical rainforest, according to an article on the study published in Scientific Reports.

Forest gaps are most frequent in the areas with the highest levels of soil fertility, possibly because the abundance of organic material drives faster tree growth and shorter life cycles.

The main method of data collection used in the study was LiDAR (light detection and ranging), a remote sensing method that uses pulsed laser light. Coverage extended to remote parts of the Brazilian Amazon where fieldwork is very difficult and satellite images can be imprecise, owing mainly to heavy cloud.

An airborne LiDAR system emits thousands or hundreds of thousands of laser light pulses, which bounce off Earth’s surface and return to the system at the speed of light, enabling the height of trees and other objects to be determined on the basis of the lag between emission and reception of the pulses. Resolution can be as high as 1 meter, so LiDAR is used to survey topography and the structure of vegetation, often in the form of a 3D scan.

“The western and southeastern parts of Amazonia had the most gaps, closest to the ‘arc of deforestation’ on the agricultural frontier. Forest dynamics are up to 35% faster there than in the center-east and north, with more gap creation and tree mortality,” Ricardo Dal’Agnol, first author of the article, told Agência FAPESP. Dal’Agnol is an environmental engineer working as a researcher in the Earth Observation & Geoinformatics Division of Brazil’s National Space Research Institute (INPE).

In the study, which was supported by FAPESP, the scientists used a database resulting from more than 600 flights over the forest as part of INPE’s Amazon Biomass Estimation Project (EBA), led by Jean Ometto, a senior researcher at INPE and a co-author of the article.

The purpose of the EBA was to quantify biomass and carbon in the Amazon and explore the dynamics of vegetation in the region. The maps produced by INPE as part of the project can be used to formulate public policy, facilitate the inventorying of emissions, and estimate carbon balances.

Carbon sequestration

Forests, above all tropical forests, are considered the largest biological reservoir of biomass and carbon on the planet. Trees need large amounts of CO2 to develop and grow. Changes in forest functioning and tree mortality therefore significantly influence the amount of greenhouse gas emissions into the atmosphere. They also directly affect the market for carbon credits currently being implemented in several countries following regulation by the Paris Agreement, a major global environmental policy milestone. 

In 2019, greenhouse gas emissions in Brazil rose 9.6% compared with the previous year, largely owing to deforestation in the Amazon. In that year, Brazil pumped 2.17 billion gross tonnes of carbon dioxide equivalent (tCO2e) into the atmosphere, up from 1.98 billion tCO2e in 2018, reversing the downtrend seen in previous years, according to a report by Brazil’s Greenhouse Gas Emission and Removal Estimating System (SEEG). 

“The uncertainties associated with tree mortality drivers and mechanisms, especially at smaller scales (Scientific Reports article.

Previous research had already pointed to the influence of climate change, especially rising temperatures and drier weather, on tree mortality in tropical forests. One recent study, also led by Brazilian researchers, was published in December 2020 in Proceedings of the National Academy of Sciences (PNAS). 

Future

According to Dal’Agnol, mapping trees that die standing to obtain more data on forest dynamics is the next big challenge. “Some trees die but don’t fall, remaining upright as skeleton-like trunks,” he said. “A next step could be to try to map these standing dead trees in order to obtain a more comprehensive picture of tree mortality.”

In the article, the scientists say “the spatial patterns of dynamic gaps” mapped using LiDAR data were “notably consistent with field mortality patterns” but were 60% lower, probably owing to “predominant detection of the broken/uprooted mode of death”. 

Dal’Agnol’s postdoctoral research, on which he is now working with FAPESP’s support, uses a novel approach to the analysis of airborne LiDAR data to quantify tree mortality and estimate biomass loss in tropical forests. The principal investigator for the project is Luiz Eduardo Oliveira e Cruz de Aragão, which subscribes the article as last author. 

###

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Media Contact
heloisa reinert
[email protected]

Original Source

https://agencia.fapesp.br/35620/

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-80809-w

Tags: BiologyClimate ChangeEcology/EnvironmentForestryPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

July 20, 2025

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025

Pathology Multiplexing Revolutionizes Disease Mapping

July 20, 2025

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.