• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Air pollutant reductions could enhance global warming without greenhouse gas cuts

Bioengineer by Bioengineer
March 10, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Modeling predicts that loss of cooling effect attributed to sulfate aerosols will increase surface air temperature if air pollution and carbon dioxide are not simultaneously reduced

IMAGE

Credit: Toshihiko Takemura, Kyushu University

As countries around the world race to mitigate global warming by limiting carbon dioxide emissions, an unlikely source could be making climate goals harder to achieve without even deeper cuts in greenhouse gas production: reductions in air pollution.

New modeling experiments from Kyushu University in Japan of the long-term effects of reductions in pollutants known as sulfate aerosols predicts further increases in surface air temperature at current and increased carbon dioxide levels because of the loss of an overall cooling effect caused by the light-scattering particles.

“Air pollution causes an estimated seven million premature deaths per year worldwide, so action is essential, especially in emerging and developing countries, which tend to be most affected,” says Toshihiko Takemura, professor at Kyushu University’s Research Institute for Applied Mechanics and author of the study.

“However, reductions in air pollutants must come hand in hand with reductions in greenhouse gases to avoid accelerating global warming.”

To analyze how sulfate aerosols–small particles of sulfur-containing compounds often produced by burning fossil fuels or biomass–influence climate, Takemura used a combination of models known as MIROC-SPRINTARS.

MIROC is a general circulation model taking into account many key aspects of the atmosphere and oceans along with their interactions, while SPRINTARS, which is widely used by news outlets for air pollution forecasts, is capable of predicting the mixing of aerosols in the atmosphere.

Combining the two models allows for effects such as the scattering and absorption of light by aerosols and the interaction of aerosols with clouds to be included in the climate projection.

Looking at the immediate changes to the atmosphere in the case of reduced emission of SO2–a precursor of sulfate aerosols–from fuel sources, Takemura found that changes such as in light scattering and cloud formation by the sulfate aerosols lead to more energy overall entering the atmosphere, though the increase is similar regardless of whether the atmospheric carbon dioxide concentration is the same as present levels or doubled.

However, considering changes in the climate and surface temperatures over longer time scales showed that not only does the surface air temperature increase with a reduction in sulfate aerosols but this increase is even larger when carbon dioxide levels double.

“Although the fast response is similar for both situations, long-term changes caused by more slowly responding factors related to interactions with the oceans and subsequent changes, such as in clouds and precipitation, eventually leads to a bigger temperature increase,” explains Takemura.

“Thus, global warming will accelerate unless increases in greenhouse gas concentrations are suppressed as air pollution control measures decrease sulfate aerosol concentrations, further emphasizing the urgency for reducing carbon dioxide in the atmosphere,” he concludes.

###

For more information about this research, see “Return to different climate states by reducing sulphate aerosols under future CO2 concentrations,” Toshihiko Takemura, Scientific Reports (2020). https://doi.org/10.1038/s41598-020-78805-1

Media Contact
William J. Potscavage Jr.
[email protected]

Original Source

https://www.kyushu-u.ac.jp/en/researches/view/207

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-78805-1

Tags: Atmospheric ScienceClimate ChangeClimate ScienceEarth SciencePollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Sex Differences in Pig Blood Gene Expression

Sex Differences in Pig Blood Gene Expression

October 11, 2025
RLCKs Phosphorylate RopGEFs to Regulate Arabidopsis Growth

RLCKs Phosphorylate RopGEFs to Regulate Arabidopsis Growth

October 10, 2025

Discovering New Proteomic Biomarkers for Hypertension

October 10, 2025

Cold-Tolerant Germination in Hulless Barley Uncovered!

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1207 shares
    Share 482 Tweet 301
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    97 shares
    Share 39 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    85 shares
    Share 34 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Biomass for Sustainable Bioethanol Production

Adolescent Shoulder MRIs: Unraveling Supraspinatus Tendon Mysteries

Evaluating Pancreaticobiliary Maljunction in Children via Ultrasound

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.