• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

AI methods of analyzing social networks find new cell types in tissue

Bioengineer by Bioengineer
October 19, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Gabriele Partel

In situ sequencing enables gene activity inside body tissues to be depicted in microscope images. To facilitate interpretation of the vast quantities of information generated, Uppsala University researchers have now developed an entirely new method of image analysis. Based on algorithms used in artificial intelligence, the method was originally devised to enhance understanding of social networks. The researchers’ study is published in The FEBS Journal.

The tissue composing our organs consists of trillions of cells with various functions. All the cells in an individual contain the same genes (DNA) in their nuclei. Gene expression occurs by means of “messenger RNA” (mRNA) – molecules that carry messages from the nucleus to the rest of the cell, to direct its activities. The mRNA combination thus defines the function and identity of every cell.

RNA transcripts are obtainable through in situ sequencing. The researchers behind the new study had previously been involved in developing this method, which shows millions of detected mRNA sequences as dots in microscope images of the tissue. The problem is that distinguishing all the important details may be difficult. This is where the new AI-based method may come in useful, since it allows unsupervised detection of cell types as well as detection of functions within an individual cell and of interactions among cells.

“We’re using the latest AI methods – specifically, graph neural networks, developed to analyse social networks; and adapting them to understand biological patterns and successive variation in tissue samples. The cells are comparable to social groupings that can be defined according to the activities they share in their social networks like Twitter, sharing their Google search results or TV recommendations,” says Carolina Wählby, professor of quantitative microscopy at the Department of Information Technology, Uppsala University.

Earlier analytical methods of this type of data depend on knowing which cell types the tissue contains, and identifying the cell nuclei in it, in advance. The method conventionally used, known as “single-cell analysis”, may lose some mRNA and miss certain cell types. Even with advanced automated image analysis, it is often difficult to find the various cell nuclei if, for example, the cells are packed densely together.

“With our analysis, which we call ‘spage2vec’, we can now get corresponding results without any previous knowledge of expected cell types. And what’s more, we can find new cell types and intra- or intercellular functions in tissue,” Wählby says.

The research group are now working further on its analytical method by investigating differentiation and organisation of various types of cells during the early development of the heart. This is pure basic research, intended to provide more knowledge of the mechanisms that govern development, both when everything is functioning as it should and when a disease is present. In another project, a collaboration with cancer researchers, the Uppsala group are hoping to be able to apply the new methods to gain a better understanding of how tumour tissue interacts, at molecular level, with surrounding healthy tissue. The aim is that, in the long term, this will culminate in better treatments that can be adapted to individual patients.

###

G. Partel, C. Wählby, “Spage2vec: Unsupervised representation of localized spatial gene expression signatures”, The FEBS Journal. DOI: 10.1111/febs.15572

Media Contact
Carolina Wahlby
[email protected]

Original Source

https://www.uu.se/en/news-media/press-releases/press-release/?id=5226&typ=pm&lang=en

Related Journal Article

http://dx.doi.org/10.1111/febs.15572

Tags: Algorithms/ModelsBiologycancerCell BiologyComputer ScienceGeneticsMolecular BiologyPhysiologyRobotry/Artificial Intelligence
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Comparing Treatments for Advanced Esophageal Cancer

August 16, 2025
blank

Immune Checkpoint Inhibitors Show Promise in Unknown Cancers

August 16, 2025

Gallbladder Removal Disrupts Gut Microbes, Fuels Tumors

August 16, 2025

Medical Staff Views on NAVA in Preterm Infants

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing Treatments for Advanced Esophageal Cancer

Immune Checkpoint Inhibitors Show Promise in Unknown Cancers

Gallbladder Removal Disrupts Gut Microbes, Fuels Tumors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.