• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

AI holographic nanostructures on CMOS chips for energy-efficient security schemes

Bioengineer by Bioengineer
March 11, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Elena Goi, Xi Chen, Qiming Zhang, Benjamin P. Cumming, Steffen Schoenhardt?Haitao Luan and Min Gu

Today, machine learning based methods are of our everyday life, with millions of users every day unlocking their phones through facial recognition or passing through AI-enabled automated security checks at airports and train stations. Traditionally, the processing of information native to the optical domain is being executed in the electronic domain, requiring energy-hungry specialized electronic hardware and conversion between the two realms. Optical machine learning is emerging as an important field, where the processing of optical information is done directly within the optical domain, power-efficient and at the speed of light.

Machine learning tasks, such as pattern recognition or image classification, rely heavily on the multiplication of large matrices, a resource-hungry computational task. Through machine-learning based design of optical elements with sub-wavelength feature sizes it is possible to perform these matrix operations directly in the optical domain, power-efficient through passive optical components. However, these passive optical elements are currently restricted in neuron size and density, while relying on bulky free-space optical systems, making them unsuitable for optical machine learning tasks in the visible wavelength regime and integration into compact designs.

In a new paper published in Light Science & Application, a team of scientists, led by Professor Min Gu from the Centre for Artificial Intelligence Nanophotonics (CAIN), School of Optical, Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China, in collaboration with RMIT University in Melbourne (Australia) has developed a new concept for compact optical machine-learning decryptors (MLDs) that process information at the speed of light trough all-optical inference, without consuming any power and can be directly integrated on a CMOS chips. This energy-efficient commixture of optics and electronics paves a path towards machine learning based analysis of optical information for a new generation of edge devices enhanced by artificial intelligence.

In their work, the scientists use computer-based machine learning methods to train thin holographic perceptrons with nanometer feature size, that are capable of recognizing images and perform critical decryption of messages. Using Galvo-Dithered Two Photon Lithography (GD-TPN), a state-of-the-art laser 3D-nanoprinting technology, the researchers fabricate decryptors for operation in the near infrared region with a neuron density of over 500 million neurons per square centimetre with a height resolution down to 10 nm. The nanoscale feature size of these nanoprinted perceptrons not only leads to a higher neuron density and opens the diffractive neural networks up to process information in the visible and near infrared wavelength regime, it also enables highly compact devices through wide diffraction angles and short operative distances. Hence, the upper limit for the computational power for the nanoprinted decryptors lies at 400 ExaFLOPS (1018 FLOPS, floating operations per second), an increase in the operations per second compared with diffractive devices operating in the THz region and integrated photonic hardware of three and five orders of magnitude, respectively.

By printing the MLDs directly on a CMOS chip, the researchers achieve compact and highly integrated devices, which not only outperform current optical decryption methods, but show the potential for application of full optical inference devices in a wide range of fields from computer vision to medical diagnostics. Through the targeted wavelength region, the compactness, the possibility to perform a multitude of tasks, combined with the intrinsic compatibility with electronic-chip manufacturing, including but not limited to CMOS chips, the machine learning decryptors pave the way for a completely new generation of fast and power-efficient functional optical elements for a new generation of edge devices with a wide range of applications.

###

Media Contact
Min Gu
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-021-00483-z

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

September 10, 2025
Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

September 10, 2025

Innovative Method Paves the Way for Unhindered Light Guidance

September 10, 2025

Most Precise Confirmation of Hawking’s Area Theorem from Clearest Black Hole Collision Signal Yet

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    62 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Immune Responses via Proximity Labeling

Impact of Teamwork and Competition on STEM Engagement

Transforming Postgraduate Nursing: Journal Club Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.