• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

AI can jump-start radiation therapy for cancer patients

Bioengineer by Bioengineer
January 27, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Computer instantly generates dosage plan, avoids potentially crucial delay

IMAGE

Credit: UTSW


DALLAS – Jan. 27, 2020 – Artificial intelligence can help cancer patients start their radiation therapy sooner – and thereby decrease the odds of the cancer spreading – by instantly translating complex clinical data into an optimal plan of attack.

Patients typically must wait several days to a week to begin therapy while doctors manually develop treatment plans. But new research from UT Southwestern shows how enhanced deep-learning models streamlined this process down to a fraction of a second.

“Some of these patients need radiation therapy immediately, but doctors often have to tell them to go home and wait,” says Steve Jiang, Ph.D., who directs UT Southwestern’s Medical Artificial Intelligence and Automation (MAIA) Lab. “Achieving optimal treatment plans in near real time is important and part of our broader mission to use AI to improve all aspects of cancer care.”

Radiation therapy is a common form of cancer treatment that utilizes high radiation beams to destroy cancer cells and shrink tumors. Previous research shows that delaying this therapy by even a week can increase the chance of some cancers either recurring or spreading by 12-14 percent.

Such statistics motivated Jiang’s team to explore methods of using AI to improve multiple facets of radiation therapy – from the initial dosage plans required before the treatment can begin to the dose recalculations that occur as the plan progresses.

Jiang says developing a sophisticated treatment plan can be a time-consuming and tedious process that involves careful review of the patient’s imaging data and several phases of feedback within the medical team.

A new study from the MAIA Lab on dose prediction, published in Medical Physics, demonstrated AI’s ability to produce optimal treatment plans within five-hundredths of a second after receiving clinical data for patients.

Researchers achieved this by feeding the data for 70 prostate cancer patients into four deep-learning models. Through repetition, the AI learned to develop 3D renderings of how best to distribute the radiation in each patient. Each model accurately predicted the treatment plans developed by the medical team.

The study builds upon other MAIA research published in 2019 that focused on developing treatment plans for lung and head and neck cancer.

“Our AI can cut out much of the back and forth that happens between the doctor and the dosage planner,” Jiang says. “This improves the efficiency dramatically.”

A second new study by Jiang, also published in Medical Physics, shows how AI can quickly and accurately recalculate dosages before each radiation session, taking into account how the patient’s anatomy may have changed since the last therapy. A conventional, accurate recalculation sometimes requires patients to wait 10 minutes or more, in addition to the time needed to conduct anatomy imaging before each session.

Jiang’s researchers developed an AI algorithm that combined two conventional models that had been used for dose calculation: a simple, fast model that lacked accuracy and a complex one that was accurate but required a much longer time, often about a half-hour.

The newly developed AI assessed the differences between the models – based on data from 70 prostate cancer patients – and learned how to utilize both speed and accuracy to generate calculations within one second.

UT Southwestern plans to use the new AI capabilities in clinical care after implementing a patient interface. Meanwhile, the MAIA Lab is developing deep-learning tools for several other purposes, including enhanced medical imaging and image processing, automated medical procedures, and improved disease diagnosis and treatment outcome prediction.

###

About the studies

The studies were supported with grants from the National Institutes of Health and the Cancer Prevention & Research Institute of Texas (CPRIT). Jiang is Vice Chair and Professor of Radiation Oncology and Director of the Division of Medical Physics and Engineering. He holds the Barbara Crittenden Professorship in Cancer Research.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution’s faculty has received six Nobel Prizes, and includes 22 members of the National Academy of Sciences, 17 members of the National Academy of Medicine, and 14 Howard Hughes Medical Institute Investigators. The full-time faculty of more than 2,500 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide care in about 80 specialties to more than 105,000 hospitalized patients, nearly 370,000 emergency room cases, and oversee approximately 3 million outpatient visits a year.

Media Contact
James Beltran
[email protected]

Original Source

https://www.utsouthwestern.edu/newsroom/articles/year-2020/ai-radiation-therapy.html

Tags: Medicine/HealthRobotry/Artificial Intelligence
Share12Tweet8Share2ShareShareShare2

Related Posts

Nanomedicine: A New Frontier in Targeting Metastasis

September 12, 2025

New Phthalide Compounds Show Promise as Antifungal Agents

September 12, 2025

Overcoming Challenges in Treating Severe Eating Disorders

September 12, 2025

Necroptosis Creates Soluble Tissue Factor Driving Thrombosis

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling Defect Dynamics in Zn-Doped CuO

Gal-9 on Leukemia Stem Cells Predicts Prognosis

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.