• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, June 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

AI-based image analysis automatically detects serious heart condition

Bioengineer by Bioengineer
June 16, 2022
in Biology
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON — Researchers have developed a new artificial intelligence (AI) method that can automatically detect plaque erosion in the heart’s arteries using optical coherence tomography (OCT) images. Monitoring plaque in the arteries is important because when plaque breaks apart it can block blood flow to the heart, leading to a heart attack or other serious conditions.

AI-based plaque detection

Credit: Zhao Wang, University of Electronic Science and Technology of China

WASHINGTON — Researchers have developed a new artificial intelligence (AI) method that can automatically detect plaque erosion in the heart’s arteries using optical coherence tomography (OCT) images. Monitoring plaque in the arteries is important because when plaque breaks apart it can block blood flow to the heart, leading to a heart attack or other serious conditions.

“If cholesterol plaque lining arteries starts to erode it can lead to a sudden reduction in blood flow to the heart known as acute coronary syndrome, which requires urgent treatment,” said research team leader Zhao Wang from the University of Electronic Science and Technology of China. “Our new method could help improve the clinical diagnosis of plaque erosion and be used to develop new treatments for patients with heart disease.”

OCT is an optical imaging method with micron-scale resolution that when integrated with a miniaturized catheter, can be used within blood vessels to provide 3D images of the coronary arteries that supply blood to the heart. Although clinicians are increasingly using intravascular OCT to look for plaque erosion, the large amount of data produced and the complexity of visually interpreting the images has led to significant interobserver variability.

To solve this problem, Wang worked with a group of engineers from his institution and physicians led by Bo Yu from The 2nd Affiliated Hospital of Harbin Medical University to develop an objective, automatic method that uses AI to detect plaque erosion based on OCT images. They describe the new technique in the Optica Publishing Group journal Biomedical Optics Express and show that it is precise enough to potentially be used as a basis for clinical diagnosis.

“Our new AI-based method can automatically detect the presence of plaque erosion using the original OCT images without any additional input,” said Wang. “The ability to detect plaque erosion objectively and automatically will reduce the laborious manual assessment associated with diagnosis.”

Applying AI

The new method consists of two primary steps. First, an AI model known as a neural network uses the original image and two pieces of shape information to predict regions of possible plaque erosion. The initial prediction is then refined with a post-processing algorithm based on clinically interpretable features that mimic the knowledge professional physicians use to make a diagnosis.

“We had to develop a new AI model that incorporates explicit shape information, the key feature used to identify plaque erosion in OCT images,” said Wang. “The underlying intravascular OCT imaging technology is also crucial because it is currently the highest resolution imaging modality that can be used to diagnose plaque erosion in living patients.”

When OCT is used for intravascular imaging, the imaging probe is automatically pulled backward inside a catheter, producing hundreds of images for each pullback. The researchers tested their method using 16 pullbacks of 5,553 clinical OCT images with plaque erosion and 10 pullbacks of 3,224 images without plaque erosion. The automated method correctly predicted 80 percent of the plaque erosion cases with a positive predictive value of 73 percent. They also found that diagnoses based on the automated method matched well with those from three experienced physicians.

“Although further safety validation and regulatory approval are needed for stand-alone clinical use in patients, the technique could be used to facilitate diagnosis of plaque erosion,” said Wang. “This would involve physicians making a final check of the algorithm’s finding and then determining the cause of acute coronary syndrome and the best treatment strategies.”

Studying new treatments

The method could also be useful for analyzing the massive amounts of existing OCT data by eliminating the time-consuming and tedious process of manual image analysis. This could help scientists improve identification and treatment for plaque erosion. For example, a stent is often used to recover reduced blood flow in patients with acute coronary syndrome, but recent studies suggest that some medications might offer a less-invasive alternative.

“Intravascular imaging, accompanied with AI technologies, can be an extremely valuable tool for diagnosis of coronary artery disease and treatment planning,” said Wang. “In the future, this new approach could help physicians develop individualized treatment strategies for optimal management of patients with acute coronary syndrome.”

The researchers are now working to improve their new technique by better incorporating 3D information and incorporating more unlabeled data to improve the AI model’s performance. In the future, they also plan to use a larger dataset that includes a global population for training and evaluating the algorithm. They also want to explore how it might be used in various clinical situations to further demonstrate its potential utility and value.

Paper: H. Sun, C. Zhao, Y. Qin, C. Li, H. Jia, B. Yu, Z. Wang, “In Vivo Detection of Plaque Erosion by Intravascular Optical Coherence Tomography Using Artificial Intelligence,” Biomed. Opt. Express, Vol. 13, Issue 7, pp. 3922-3938 (2022)

DOI: https://doi.org/10.1364/BOE.459623

About Biomedical Optics Express

Biomedical Optics Express serves the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in biomedicine. The journal scope encompasses fundamental research, technology development, biomedical studies and clinical applications. It is published monthly by Optica Publishing Group and edited by Ruikang (Ricky) Wang, University of Washington, USA. For more information, visit Biomedical Optics Express.

About Optica Publishing Group (formerly OSA)

Optica Publishing Group is a division of Optica, the society progressing light science and technology. It publishes the largest collection of peer-reviewed content in optics and photonics, including 18 prestigious journals, the society’s flagship member magazine, and papers from more than 835 conferences, including 6,500+ associated videos. With over 400,000 journal articles, conference papers and videos to search, discover and access, Optica Publishing Group represents the full range of research in the field from around the globe.



Journal

Biomedical Optics Express

DOI

10.1364/BOE.459623

Article Publication Date

16-Jun-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Rewrite University of Cincinnati structural biology research published in prestigious PNAS this news headline for the science magazine post

June 13, 2025
Panelists at a recent debriefing on the 2025 Spirit of Asilomar and the Future of Biotechnology summit.

Rewrite Biotechnology governance entreaties released, echoing legacy of 1975 recombinant DNA guidelines this news headline for the science magazine post

June 13, 2025

Rewrite Museomics highlights the importance of scientific museum collections this news headline for the science magazine post

June 13, 2025

Rewrite High-efficiency leucoplast transit peptides for manipulating plastid protein production as a headline for a science magazine post, using no more than 8 words

June 13, 2025

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    158 shares
    Share 63 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    75 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    68 shares
    Share 27 Tweet 17
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Are Traditional Podcasters Becoming Obsolete? AI-Driven Podcasts Pave the Way for Accessible Science

Rewrite The untranslatability of environmental affective scales: insights from indigenous soundscape perceptions in China as a headline for a science magazine post, using no more than 8 words

Rewrite Two frontiers: Illinois experts combine forces to develop novel nanopore sensing platform this news headline for the science magazine post

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.