• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Aging-US: new insights on skin aging gleaned from naked mole-rats

Bioengineer by Bioengineer
May 17, 2022
in Biology
Reading Time: 5 mins read
0
Single-cell transcriptomics reveals age-resistant maintenance of cell identities, stem cell compartments and differentiation trajectories in long-lived naked mole-rats skin
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BUFFALO, NY- May 17, 2022 – A new research paper was published on the cover of Aging (Aging-US) Volume 14, Issue 9, entitled, “Single-cell transcriptomics reveals age-resistant maintenance of cell identities, stem cell compartments and differentiation trajectories in long-lived naked mole-rats skin.”

Researchers who authored this research paper are affiliated with the Université Paris Cité, Sorbonne Université, Fondation pour la Recherche en Physiologie, Queen Mary University of London, Hôpital Tenon, Université de Namur ASBL, Ecole Nationale Vétérinaire d’Alfort, and Hôpital Cochin.

“In the present study, we performed extensive in situ analysis and single-cell RNA-sequencing comparing young and older animals.”

Skin acts as an essential barrier and protects organisms from external threats, preventing fluid loss, stabilizing body temperature and relaying sensory information to the brain. 

Maintaining skin homeostasis is essential, as alterations in skin functions can cause various deleterious conditions ranging from fluid loss to more severe diseases, such as infections or UV-induced cancers.

Naked mole-rats (NMR) are subterranean rodents characterized by an unusual longevity coupled with an unexplained resistance to aging. 

At variance with other species, naked mole-rats exhibited a striking stability of skin compartments and cell types, which remained stable over time without aging-associated changes.

“Thus, we hypothesize that the maintenance of cellular compartments in the older NMR, especially the stem cell pool through high Igfbp3 expression, coupled with an increase skin immunity, could explain their skin slower rate of aging.”

The researchers used single-cell RNA-sequencing (scRNA-seq) to obtain an unbiased molecular RNA profile of the naked mole-rats’ epidermal cell populations. They found that epidermal gene expression did not change with aging. Three classical cellular states defined a unique keratinocyte differentiation trajectory that were not altered after pseudo-temporal reconstruction. 

NMR skin healing closure was similar in young and older animals and, remarkably, the number of stem cells was constant throughout aging. The researchers found that NMR epidermal cells displayed two main populations, immune cells (one cluster) and keratinocytes, subdivided into 10 clusters.

“Performing a deeper analysis within each cluster individually, we found 2 genes overexpressed in basal stem cells of older animals and 5 genes overexpressed in immune cells of older animals.”

“Altogether, these results indicate that NMR skin is characterized by peculiar genetic and cellular features, different from those previously demonstrated for mice and humans. The remarkable stability of the aging NMR skin transcriptome likely reflects unaltered homeostasis and resilience.”

DOI: https://doi.org/10.18632/aging.204054 
Correspondence to: Romain H. Fontaine – Email: [email protected] 
Keywords: naked mole-rat, skin stem cells, wound healing, aging
For media inquiries, please contact [email protected].

Follow Aging on social media: 

Single-cell transcriptomics reveals age-resistant maintenance of cell identities, stem cell compartments and differentiation trajectories in long-lived naked mole-rats skin

Credit: Aging-US.com

BUFFALO, NY- May 17, 2022 – A new research paper was published on the cover of Aging (Aging-US) Volume 14, Issue 9, entitled, “Single-cell transcriptomics reveals age-resistant maintenance of cell identities, stem cell compartments and differentiation trajectories in long-lived naked mole-rats skin.”

Researchers who authored this research paper are affiliated with the Université Paris Cité, Sorbonne Université, Fondation pour la Recherche en Physiologie, Queen Mary University of London, Hôpital Tenon, Université de Namur ASBL, Ecole Nationale Vétérinaire d’Alfort, and Hôpital Cochin.

“In the present study, we performed extensive in situ analysis and single-cell RNA-sequencing comparing young and older animals.”

Skin acts as an essential barrier and protects organisms from external threats, preventing fluid loss, stabilizing body temperature and relaying sensory information to the brain. 

Maintaining skin homeostasis is essential, as alterations in skin functions can cause various deleterious conditions ranging from fluid loss to more severe diseases, such as infections or UV-induced cancers.

Naked mole-rats (NMR) are subterranean rodents characterized by an unusual longevity coupled with an unexplained resistance to aging. 

At variance with other species, naked mole-rats exhibited a striking stability of skin compartments and cell types, which remained stable over time without aging-associated changes.

“Thus, we hypothesize that the maintenance of cellular compartments in the older NMR, especially the stem cell pool through high Igfbp3 expression, coupled with an increase skin immunity, could explain their skin slower rate of aging.”

The researchers used single-cell RNA-sequencing (scRNA-seq) to obtain an unbiased molecular RNA profile of the naked mole-rats’ epidermal cell populations. They found that epidermal gene expression did not change with aging. Three classical cellular states defined a unique keratinocyte differentiation trajectory that were not altered after pseudo-temporal reconstruction. 

NMR skin healing closure was similar in young and older animals and, remarkably, the number of stem cells was constant throughout aging. The researchers found that NMR epidermal cells displayed two main populations, immune cells (one cluster) and keratinocytes, subdivided into 10 clusters.

“Performing a deeper analysis within each cluster individually, we found 2 genes overexpressed in basal stem cells of older animals and 5 genes overexpressed in immune cells of older animals.”

“Altogether, these results indicate that NMR skin is characterized by peculiar genetic and cellular features, different from those previously demonstrated for mice and humans. The remarkable stability of the aging NMR skin transcriptome likely reflects unaltered homeostasis and resilience.”

DOI: https://doi.org/10.18632/aging.204054 
Correspondence to: Romain H. Fontaine – Email: [email protected] 
Keywords: naked mole-rat, skin stem cells, wound healing, aging
For media inquiries, please contact [email protected].

Follow Aging on social media: 

  • Twitter – https://twitter.com/AgingJrnl
  • Facebook – https://www.facebook.com/AgingUS
  • SoundCloud – https://soundcloud.com/aging-us
  • YouTube – https://www.youtube.com/agingus
  • LinkedIn – https://www.linkedin.com/company/aging

 

Aging (Aging-US) Journal Office
6666 E. Quaker Str., Suite 1B
Orchard Park, NY 14127
Phone: 1-800-922-0957, option 1

###



Journal

Aging-US

DOI

10.18632/aging.204054

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Single-cell transcriptomics reveals age-resistant maintenance of cell identities, stem cell compartments and differentiation trajectories in long-lived naked mole-rats skin

Article Publication Date

4-May-2022

COI Statement

The authors declare that they have no conflicts of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

Researchers Forge Innovative Paths in Immunotherapy for Cancer Treatment

Researchers Forge Innovative Paths in Immunotherapy for Cancer Treatment

October 8, 2025
Calm Red Brocket Deer Can Learn “Come” and Other Commands, While the Flightiest Struggle

Calm Red Brocket Deer Can Learn “Come” and Other Commands, While the Flightiest Struggle

October 8, 2025

Captive Bears and Pandas Exhibit Distinct Gut Microbiomes, with Giant Pandas Showing Reduced Microbial Diversity Compared to Wild Populations

October 8, 2025

Building a Core Collection for Cacao Diversity

October 8, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1116 shares
    Share 446 Tweet 279
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex and Smoking Shape Bladder Mutation Patterns

Revolutionizing Object Detection: Global Influence and Trends

Research Lab Unveils Breakthrough in mRNA Cancer Vaccine Technology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.