• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, August 9, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Aging | Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease

Bioengineer by Bioengineer
August 1, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BUFFALO, NY- August 1, 2022 – A new research paper was published in Aging (abbreviated as “Aging (Albany NY)” by Medline/PubMed and as “Aging-US” by Web of Science) on the cover of Volume 14, Issue 14, entitled, “Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease.”

Figure 6

Credit: Thrush et al.

BUFFALO, NY- August 1, 2022 – A new research paper was published in Aging (abbreviated as “Aging (Albany NY)” by Medline/PubMed and as “Aging-US” by Web of Science) on the cover of Volume 14, Issue 14, entitled, “Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease.”

Alzheimer’s disease (AD) risk increases exponentially with age and is associated with multiple molecular hallmarks of aging, one of which is epigenetic alterations. Epigenetic age predictors based on 5’ cytosine methylation (DNAm), or epigenetic clocks, have previously suggested that epigenetic age acceleration may occur in AD brain tissue. 

“Epigenetic clocks are promising tools for the quantification of biological aging, yet we hypothesize that investigation of brain aging in AD will be assisted by the development of brain-specific epigenetic clocks.” 

In this new study, researchers Kyra L. Thrush, David A. Bennett, Christopher Gaiteri, Steve Horvath, Christopher H. van Dyck, Albert T. Higgins-Chen, and Morgan E. Levine, from Yale University, Rush University Medical Center, University of California Los Angeles, VA Connecticut Healthcare System, and Altos Labs, hypothesized that a brain age methylation-based predictor could be developed with meaningful disease associations and broad multi-brain-region utility.

“To test this, we used DNAm capture to generate a PC-based epigenetic predictor of brain aging which we show to: (1) strongly reflect AD neuropathology and cognitive decline, and (2) track age across multiple brain regions.”

The team generated a novel age predictor, termed PCBrainAge, that was trained solely in cortical samples. This predictor utilizes a combination of principal components analysis and regularized regression, which reduces technical noise and greatly improves test-retest reliability.

“To characterize the scope of PCBrainAge’s utility, we generated DNAm data from multiple brain regions in a sample from the Religious Orders Study and Rush Memory and Aging Project.”

PCBrainAge captures meaningful heterogeneity of aging: Its acceleration demonstrates stronger associations with clinical AD dementia, pathologic AD, and APOE ε4 carrier status compared to extant epigenetic age predictors. It further does so across multiple cortical and subcortical regions. 

“Overall, PCBrainAge’s increased reliability and specificity makes it a particularly promising tool for investigating heterogeneity in brain aging, as well as epigenetic alterations underlying AD risk and resilience.”

 

DOI: https://doi.org/10.18632/aging.204196 

Corresponding Authors: Albert T. Higgins-Chen, Morgan E. Levine

Emails: [email protected], [email protected] 

Keywords: epigenetic clocks, unsupervised machine learning, brain, Alzheimer’s disease, age acceleration

Sign up for free Altmetric alerts about this article:  https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204196

 

About Aging-US:

Launched in 2009, Aging (Aging-US) publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

 

Please visit our website at Aging-US.com​​ and connect with us:

  • SoundCloud – https://soundcloud.com/Aging-Us
  • Facebook – https://www.facebook.com/AgingUS/
  • Twitter – https://twitter.com/AgingJrnl
  • Instagram – https://www.instagram.com/agingjrnl/
  • YouTube – https://www.youtube.com/agingus​
  • LinkedIn – https://www.linkedin.com/company/aging/
  • Pinterest – https://www.pinterest.com/AgingUS/

For media inquiries, please contact [email protected].

 

Aging (Aging-US) Journal Office

6666 E. Quaker Str., Suite 1B

Orchard Park, NY 14127

Phone: 1-800-922-0957, option 1

###



Journal

Aging-US

DOI

10.18632/aging.204196

Method of Research

Experimental study

Subject of Research

Human tissue samples

Article Title

Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease

Article Publication Date

30-Jul-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Schematic view of Wnt signaling in heart tissue.

Future medical applications in drug design

August 9, 2022
Image 1

Robot helps reveal how ants pass on knowledge

August 9, 2022

The walk of Japanese children develops differently from children in other countries

August 9, 2022

Aldosterone linked to increased risk of chronic kidney disease progression and end-stage kidney disease

August 9, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    66 shares
    Share 26 Tweet 17
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryVehiclesWeather/StormsUrogenital SystemZoology/Veterinary ScienceVirusVirologyUrbanizationUniversity of WashingtonVaccineVaccinesViolence/Criminals

Recent Posts

  • Sexual dysfunction high among women with lung cancer
  • Vancouver researchers suggest air pollution be included as risk factor for patients with lung cancer and have never smoked
  • Association Between KRAS/STK11/KEAP1 Mutations and Outcomes in POSEIDON: Durvalumab ± Tremelimumab + Chemotherapy in mNSCLC
  • Informed consent forms for lung cancer clinical trials may be a barrier to informed trial participation
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In