• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Aging | Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease

Bioengineer by Bioengineer
August 1, 2022
in Biology
Reading Time: 4 mins read
0
Figure 6
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BUFFALO, NY- August 1, 2022 – A new research paper was published in Aging (abbreviated as “Aging (Albany NY)” by Medline/PubMed and as “Aging-US” by Web of Science) on the cover of Volume 14, Issue 14, entitled, “Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease.”

Figure 6

Credit: Thrush et al.

BUFFALO, NY- August 1, 2022 – A new research paper was published in Aging (abbreviated as “Aging (Albany NY)” by Medline/PubMed and as “Aging-US” by Web of Science) on the cover of Volume 14, Issue 14, entitled, “Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease.”

Alzheimer’s disease (AD) risk increases exponentially with age and is associated with multiple molecular hallmarks of aging, one of which is epigenetic alterations. Epigenetic age predictors based on 5’ cytosine methylation (DNAm), or epigenetic clocks, have previously suggested that epigenetic age acceleration may occur in AD brain tissue. 

“Epigenetic clocks are promising tools for the quantification of biological aging, yet we hypothesize that investigation of brain aging in AD will be assisted by the development of brain-specific epigenetic clocks.” 

In this new study, researchers Kyra L. Thrush, David A. Bennett, Christopher Gaiteri, Steve Horvath, Christopher H. van Dyck, Albert T. Higgins-Chen, and Morgan E. Levine, from Yale University, Rush University Medical Center, University of California Los Angeles, VA Connecticut Healthcare System, and Altos Labs, hypothesized that a brain age methylation-based predictor could be developed with meaningful disease associations and broad multi-brain-region utility.

“To test this, we used DNAm capture to generate a PC-based epigenetic predictor of brain aging which we show to: (1) strongly reflect AD neuropathology and cognitive decline, and (2) track age across multiple brain regions.”

The team generated a novel age predictor, termed PCBrainAge, that was trained solely in cortical samples. This predictor utilizes a combination of principal components analysis and regularized regression, which reduces technical noise and greatly improves test-retest reliability.

“To characterize the scope of PCBrainAge’s utility, we generated DNAm data from multiple brain regions in a sample from the Religious Orders Study and Rush Memory and Aging Project.”

PCBrainAge captures meaningful heterogeneity of aging: Its acceleration demonstrates stronger associations with clinical AD dementia, pathologic AD, and APOE ε4 carrier status compared to extant epigenetic age predictors. It further does so across multiple cortical and subcortical regions. 

“Overall, PCBrainAge’s increased reliability and specificity makes it a particularly promising tool for investigating heterogeneity in brain aging, as well as epigenetic alterations underlying AD risk and resilience.”

 

DOI: https://doi.org/10.18632/aging.204196 

Corresponding Authors: Albert T. Higgins-Chen, Morgan E. Levine

Emails: [email protected], [email protected] 

Keywords: epigenetic clocks, unsupervised machine learning, brain, Alzheimer’s disease, age acceleration

Sign up for free Altmetric alerts about this article:  https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204196

 

About Aging-US:

Launched in 2009, Aging (Aging-US) publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

 

Please visit our website at Aging-US.com​​ and connect with us:

  • SoundCloud – https://soundcloud.com/Aging-Us
  • Facebook – https://www.facebook.com/AgingUS/
  • Twitter – https://twitter.com/AgingJrnl
  • Instagram – https://www.instagram.com/agingjrnl/
  • YouTube – https://www.youtube.com/agingus​
  • LinkedIn – https://www.linkedin.com/company/aging/
  • Pinterest – https://www.pinterest.com/AgingUS/

For media inquiries, please contact [email protected].

 

Aging (Aging-US) Journal Office

6666 E. Quaker Str., Suite 1B

Orchard Park, NY 14127

Phone: 1-800-922-0957, option 1

###



Journal

Aging-US

DOI

10.18632/aging.204196

Method of Research

Experimental study

Subject of Research

Human tissue samples

Article Title

Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer’s disease

Article Publication Date

30-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025
3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025

The Fascinating Origins of Our Numerals

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Engineered Prime Editors Minimize Genomic Errors

New Study Confronts the Cardiovascular Impact of COVID-19 Head-On

Groundbreaking Report Reveals Strategies to Address COVID-19’s Lasting Impact on Cardiovascular Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.