• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Aggressive, non-native wetland plants squelch species richness more than dominant natives do

Bioengineer by Bioengineer
June 19, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Greg Spyreas, Michael Jeffords and Susan Post

CHAMPAIGN, Ill. — Dominant, non-native plants reduce wetland biodiversity and abundance more than native plants do, researchers report in the journal Ecology Letters. Even native plants that dominate wetland landscapes play better with others, the team found.

The researchers analyzed 20 years of data collected by expert botanists from hundreds of randomly selected sites in Illinois. This allowed them to track changes in the variety and abundance of different plants in the same locations over time.

The dominant non-natives are not just choking out many other plants, the researchers report. They also have a broad ecological footprint, taking over wetlands on a regional level, rather than just in individual sites. This negatively affects populations of birds and insects that rely on the native wetlands.

“The more dominant they are, the less room is available for other species,” said Illinois Natural History plant ecologist and botanist Greg Spyreas, who conducted the research with INHS plant ecologist David Zaya and colleagues from the U.S. Geological Survey. “These non-natives become more dominant over time and their impact on the rest of the community is fundamentally different,” Spyreas said. “They outcompete better. And that’s across hundreds of sites.”

For example, a European cultivar of reed canary grass has taken hold in many parts of North America. It grows extremely fast, reduces the light available to other plants, produces enormous numbers of seeds and sends out underground stems to quickly colonize a site, Spyreas said.

“It creates this very thick thatch of dead material on the ground that other plants can’t penetrate – but it can,” he said. “It tolerates drought and flooding very well, whereas a lot of native plants cannot.”

Another offender, a non-native common reed, Phragmites, “is notable in its aggressiveness,” Zaya said. It can quickly crowd out other wetland species, including native Phragmites.

Not all non-native plants reduce the ecological richness of wetlands, Zaya said.

“There are non-natives that sit in the background and don’t affect the wetland community,” he said. “Also, many native plants will dominate wetland communities.”

Some researchers have hypothesized that it doesn’t matter if a dominant plant is native or non-native: Both can drive down the diversity and abundance of other species, Zaya said.

But the new study shows that dominant, non-native species are much more likely to radically diminish the biological diversity of a locale than their native counterparts will.

“When I see native- versus non-native-dominated wetlands, it looks like two totally different worlds,” Zaya said. “Each native wetland has its own personality, with a different little flower or forb or rare grass or sedge. No two are the same. But the non-native wetlands tend to look alike. They’re the same here as they are in Ohio.”

The data also offer insights into how to best maintain wetland diversity, the researchers said.

“If you have a massive database of wetland plants like we do in Illinois, if you look at the numbers, you can isolate the species that are the most problematic,” Spyreas said. Five non-native wetland plants are on the “worst offender” list, he said: reed canary grass, a non-native cattail, invasive Phragmites and two European buckthorns.

“If you can eliminate those, you’ve eliminated 90 percent of the non-native wetland species problem,” Spyreas said.

###

The INHS is a division of the Prairie Research Institute at the University of Illinois.

Editor’s notes:

To reach Greg Spyreas, call 217-300-4023; email [email protected].

To reach David Zaya, email [email protected].

The paper “Non-native plants have greater impacts because of differing per-capita effects and nonlinear abundance-impact curves” is available online and from the U. of I. News Bureau.

Michael Jeffords and Susan Post are wildlife photographers and research affiliates of the Illinois Natural History Survey at the Prairie Research Institute of the U. of I. Their photographs are available here.

Media Contact
Diana Yates
[email protected]

Original Source

https://news.illinois.edu/view/6367/799821

Related Journal Article

http://dx.doi.org/10.1111/ele.13284

Tags: BiologyEvolutionHydrology/Water ResourcesMarine/Freshwater BiologyPlant SciencesPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

September 24, 2025
blank

Celebrating 100 Years Since the Birth of IVF Pioneer Sir Robert Edwards

September 24, 2025

How Different ALK Fusion Variants Impact Lung Cancer Treatment Success

September 23, 2025

Tracking Motor Skills Across the Lifespan: Using Percentile Reference Curves in Practice

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12
  • Rapid Spread of Drug-Resistant Fungus Candidozyma auris in European Hospitals Prompts Urgent Warning from ECDC

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

Advanced Broadband Photodetector Enables Day-Night Recognition and Distance Measurement

New Peer-Reviewed EWG Study Reveals Certain Produce Increases Pesticide Levels in Humans

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.