• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, June 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Advancing light-driven micromotors

Bioengineer by Bioengineer
November 30, 2022
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Motion is everywhere in living systems and is necessary for mechanical functions in artificial systems, such as robots and machines. Functional mechanical structures that can change volume and shape in response to external stimuli (such as light, heat, electricity, humidity, and chemistry) have a wide range of application prospects in the field of biomechanics and bionic robots. They have attracted immense research interest, particularly at micro-/nanoscales.

Micromotors-intext-illustration

Credit: Tang, Jia, et al.

Motion is everywhere in living systems and is necessary for mechanical functions in artificial systems, such as robots and machines. Functional mechanical structures that can change volume and shape in response to external stimuli (such as light, heat, electricity, humidity, and chemistry) have a wide range of application prospects in the field of biomechanics and bionic robots. They have attracted immense research interest, particularly at micro-/nanoscales.

Many proposals for actuators rely on light as an energy source. Optical force is commonly used to manipulate microobjects, due to its unique advantages of precision, immediacy, and capacity for miniaturization. The fundamental principle involved in optical manipulation is that photons carry momentum that can transfer to objects during scattering and absorbing processes, and accordingly enable their motion. But optical force produced by momentum transfer is at a level of the piconewton, which is much smaller than the adhesive force on a solid interface, making it difficult to work in nonliquid environments.

Light-induced elastic waves present a solution. Induced by temperature rising through optical absorption in microobjects, they convey sufficient mechanical displacement to enable microobjects to crawl on solid interfaces. The idea has been successfully exemplified with gold microplates in microfiber-based systems. Such pioneering results encourage new perspectives for light-driven micromotors on solid interfaces, yet there remain questions to be explored. For instance, the actuation principle is theoretically applicable for any microobject that can generate elastic waves by absorbing light, but it has not yet been extended to other absorptive, elastic materials. Also, potential issues associated with thermal effects (such as thermal damage and melting) remain to be addressed.

As reported in Advanced Photonics Nexus, researchers from Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, and Westlake University approached these outstanding issues by studying the motion of two-dimensional topological insulator antimony telluride plates on microfibers to which laser pulses are delivered. Antimony telluride, Sb2Te3, is a unique quantum material hosting topologically protected boundary surface states that lead to several fascinating electric and optical properties, such as spin-momentum locking of electrons and ultrabroadband plasmon excitations. The researchers harnessed these properties to efficiently absorb light for generating elastic waves. Since Sb2Te3 has a rather low thermal conductivity (~1 W/m/K, close to glass and two orders of magnitude smaller than gold), it can also mitigate heat diffusion and intensify thermal effects.

Experimentally, the team implemented a microfiber-based actuation system in a scanning electron microscope (SEM) chamber, where light-induced actuation can be precisely characterized. Their successful observations of continuous spiral motion of Sb2Te3 plates supplement previous results with gold plates, contributing new evidence to support the actuation principle based on light-induced elastic waves.

The team investigated the thermal effects on actuation in their system by intentionally increasing the laser power. They observed a new type of liquid-like motion that shows features completely different from the elastic-wave-based spiral motion. They note that this phenomenon is caused by the formation of the microbumps induced by the Marangoni effect, which is a common thermal effect. The asymmetric deformation of the thermal induced liquid-like state provides the driving force.

Many unique applications can be immediately envisioned with a light-enabled actuator in a nonliquid environment. For instance, mobile photonic modulation/switching by delivering microobjects to targeted positions to control the light flow can be realized by integrating this technique into an on-chip waveguide network. Besides, multimode micro robots operating in vacuum system can be realized by carefully designing the driving light and the geometry of the actuator.

Read the Gold Open Access article by W. Tang et al., “Light-induced vacuum micromotors based on an antimony telluride microplate,” Adv. Photon. Nexus 1(2), 026005 (2022), doi 10.1117/1.APN.1.2.026005.



Journal

Advanced Photonics Nexus

DOI

10.1117/1.APN.1.2.026005

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Light-induced vacuum micromotors based on an antimony telluride microplate

Article Publication Date

16-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

TU Graz femtosecond laser laboratory

Physicists at TU Graz Capture Real-Time Energy Flow During Chemical Bond Formation

June 17, 2025
Enzyme-Driven Scaffold Hopping Creates Diverse Terpenoids

Enzyme-Driven Scaffold Hopping Creates Diverse Terpenoids

June 16, 2025

Wriggling Together: Exploring Movement Within Entangled Worm Clusters

June 16, 2025

Smartphones Enhance Medical Device Accuracy Across Diverse Skin Tones

June 16, 2025

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    159 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    70 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Vigabatrin-Linked Brain MRI Changes in Epileptic Kids

Humanized Monovalent Antibody Therapy Tackles NMDA Encephalitis

Rethinking the Language of Energy Poverty

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.