• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, February 5, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Adaptive optics with cascading corrective elements

Bioengineer by Bioengineer
January 21, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A cascaded dual deformable phase plate wavefront modulator enables direct AO integration with existing microscopes–doubling the aberration correction range and greatly improving image quality

IMAGE

Credit: SPIE

Microscopy is the workhorse of contemporary life science research, enabling morphological and chemical inspection of living tissue with ever-increasing spatial and temporal resolution. Even though modern microscopes are genuine marvels of engineering, minute deviations from ideal imaging conditions will still lead to optical aberrations that rapidly degrade imaging quality. A mismatch between the refractive indices of the sample and its immersion medium, deviations in the thickness of sample holders or cover glasses, the effects of aging on the instrument–such deviations can manifest themselves in the form of spherical aberration and focusing errors. Also, particularly for deep tissue imaging, an essential tool in neurobiology research, an inhomogeneous refractive index of the sample and its complex surface shape can lead to additional higher order aberrations.

Adaptive optics microscopy

Adaptive optics (AO), an image correction technique first used in astronomical telescopes for compensating the effects of atmospheric turbulence, is the state-of-the-art method to dynamically correct for sample and system-induced aberrations in a microscopy system. A typical AO system features an active, shapeshifting optical element that can reproduce the inverse of the wavefront error present in the system. Commonly taking the form of either a deformable mirror or a liquid crystal spatial light modulator, the limitations of this element define the quality of achievable aberration correction and thus the widespread applicability of AO microscopy.

As reported in Advanced Photonics, researchers from the University of Freiburg, Germany, have made a significant advance in AO microscopy through the demonstration of a new AO module comprising two deformable phase plates (DPPs). In contrast to deformable mirrors, the DPP system is a wavefront modulator operating in transmission, enabling direct AO integration with existing microscopes. In this AO configuration, similar to hi-fidelity loudspeakers with separate woofer and tweeter units, one of the optical modulators is optimized for low-spatial frequency aberrations, while the second is used for high-frequency correction.

Cascading modulation

A major challenge for an AO system with multiple phase modulators is how to place them on optically equivalent (conjugate) positions, often requiring multiple additional optical components to relay the image until it reaches the detector. Therefore, configuring even two modulators in an AO system is very challenging. Since the DPPs are

To demonstrate its performance, the team integrated their new AO system into a custom-built fluorescence microscope, where sample-induced aberrations are iteratively estimated without a wavefront sensor. Imaging experiments on synthetic samples demonstrated that the new AO system not only doubles the aberration correction range, but also greatly improves correction quality. The work demonstrates that more advanced aberration correction schemes, such as multi-conjugate adaptive optics, can be implemented as easily and with new and more advanced control methods.

###

Read the original research article by Pouya Rajaeipour et al., “Cascading optofluidic phase modulators for performance enhancement in refractive adaptive optics,” Adv. Photonics 2(6), 066005, doi 10.1117/1.AP.2.6.066005.

Media Contact
Daneet Steffens
[email protected]

Original Source

https://spie.org/news/adaptive-optics-with-cascading-corrective-elements

Related Journal Article

http://dx.doi.org/10.1117/1.AP.2.6.066005

Tags: Biomechanics/BiophysicsBiotechnologyMicrobiologyNanotechnology/MicromachinesneurobiologyOpticsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Sudanese Copts Evolve Rapid Resistance to Malaria Through Accelerated Evolutionary Process

February 5, 2026

IRF5’s Role in Emphysema via NLRP3 and Ly6C Cells

February 5, 2026

Free Halide Ions Enable Switchable Photoluminescence

February 5, 2026

Geriatric In-Home Deaths: Insights from Autopsy Findings

February 5, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sudanese Copts Evolve Rapid Resistance to Malaria Through Accelerated Evolutionary Process

IRF5’s Role in Emphysema via NLRP3 and Ly6C Cells

Free Halide Ions Enable Switchable Photoluminescence

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.