• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, July 6, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Accelerating the pace of machine learning

Bioengineer by Bioengineer
May 18, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Machine learning happens a lot like erosion.

Rick Blum

Credit: Lehigh University

Machine learning happens a lot like erosion.

Data is hurled at a mathematical model like grains of sand skittering across a rocky landscape. Some of those grains simply sail along with little or no impact. But some of them make their mark: testing, hardening, and ultimately reshaping the landscape according to inherent patterns and fluctuations that emerge over time.

Effective? Yes. Efficient? Not so much.

Rick Blum, the Robert W. Wieseman Professor of Electrical and Computer Engineering at Lehigh University, seeks to bring efficiency to distributed learning techniques emerging as crucial to modern artificial intelligence (AI) and machine learning (ML). In essence, his goal is to hurl far fewer grains of data without degrading the overall impact.

In the paper “Distributed Learning With Sparsified Gradient Differences,” published in a special ML-focused issue of the IEEE Journal of Selected Topics in Signal Processing, Blum and collaborators propose the use of “Gradient Descent method with Sparsification and Error Correction,” or GD-SEC, to improve the communications efficiency of machine learning conducted in a “worker-server” wireless architecture. The issue was published May 17, 2022.

“Problems in distributed optimization appear in various scenarios that typically rely on wireless communications,” he says. “Latency, scalability, and privacy are fundamental challenges.”

“Various distributed optimization algorithms have been developed to solve this problem,” he continues,”and one primary method is to employ classical GD in a worker-server architecture. In this environment, the central server updates the model’s parameters after aggregating data received from all workers, and then broadcasts the updated parameters back to the workers. But the overall performance is limited by the fact that each worker must transmit all of its data all of the time. When training a deep neural network, this can be on the order of 200 MB from each worker device at each iteration. This communication step can easily become a significant bottleneck on overall performance, especially in federated learning and edge AI systems.”

Through the use of GD-SEC, Blum explains, communication requirements are significantly reduced. The technique employs a data compression approach where each worker sets small magnitude gradient components to zero—the signal-processing equivalent of not sweating the small stuff. The worker then only transmits to the server the remaining non-zero components. In other words, meaningful, usable data are the only packets launched at the model.

“Current methods create a situation where each worker has expensive computational cost; GD-SEC is relatively cheap where only one GD step is needed at each round,” says Blum.

Professor Blum’s collaborators on this project include his former student Yicheng Chen ’19G ’21PhD, now a software engineer with LinkedIn; Martin Takáč, an associate professor at the Mohamed bin Zayed University of Artificial Intelligence; and Brian M. Sadler, a Life Fellow of the IEEE, U.S. Army Senior Scientist for Intelligent Systems, and Fellow of the Army Research Laboratory.

The article, “Distributed Learning With Sparsified Gradient Differences,” appears in the April 2022 special issue of the IEEE Journal of Selected Topics in Signal Processing.

About Professor Blum
Prof. Rick Blum holds the Robert W. Wieseman Endowed Professorship in Electrical Engineering. He served as the lead Lehigh PI for its DoE Cybersecurity Center (SEEDs) and is director of its Signal Processing and Communication Research Lab.

His group contributes to the foundational theory of machine learning and statistical decision making while illustrating this theory and the related algorithms by employing the application areas of cybersecurity, internet of things, cyberphysical systems, sensor networking, energy networks, communications, radar, and sensor processing.

Prior to joining the Lehigh faculty, he was a senior member of technical staff at General Electric Aerospace and graduated from GE`s Advanced Course in Engineering. He served on the editorial board for the Journal of Advances in Information Fusion of the International Society of Information Fusion. He was an associate editor for IEEE Transactions on Signal Processing and for IEEE Communications Letters. He has edited special issues for IEEE Transactions on Signal Processing, IEEE Journal of Selected Topics in Signal Processing and IEEE Journal on Selected Areas in Communications. He was a member of the SAM Technical Committee (TC) of the IEEE Signal Processing Society, the Signal Processing for Communications TC of the IEEE Signal Processing Society, and the Communications Theory TC of the IEEE Communication Society. 

Prof. Rick Blum is an IEEE Fellow, an IEEE Signal Processing Society Distinguished Lecturer, an IEEE Third Millennium Medal winner, and an ONR Young Investigator.

Related Links: 

  • IEEE Xplore: Distributed Learning With Sparsified Gradient Differences
  • Faculty Profile: Rick S. Blum
  • Department of Electrical and Computer Engineering, Lehigh University
  • Signal Processing and Communication Research Lab, Lehigh University
  • Institute for Data, Intelligent Systems, and Computation

 



Journal

IEEE Journal of Selected Topics in Signal Processing

DOI

10.1109/JSTSP.2022.3162989

Article Title

Distributed Learning With Sparsified Gradient Differences

Article Publication Date

17-May-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Cell cluster

How to find marker genes in cell clusters

July 6, 2022
Fluorescent proteins

New imaging technique allows researchers to see gene expression in brains of live mice in real time

July 6, 2022

Gecko feet are coated in an ultra-thin layer of lipids that help them stay sticky

July 6, 2022

Leon & Friends, SynGAP Research Fund USA & SRF Europe partner to grant €180,000 to Professor Courtney of Turku Bioscience Centre, Finland

July 6, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirologyVaccinesVaccineViolence/CriminalsUniversity of WashingtonUrbanizationVirusWeaponryWeather/StormsZoology/Veterinary ScienceVehiclesUrogenital System

Recent Posts

  • How to find marker genes in cell clusters
  • New imaging technique allows researchers to see gene expression in brains of live mice in real time
  • Gecko feet are coated in an ultra-thin layer of lipids that help them stay sticky
  • Leon & Friends, SynGAP Research Fund USA & SRF Europe partner to grant €180,000 to Professor Courtney of Turku Bioscience Centre, Finland
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....