• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 9, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A world first in circadian clock manipulation

Bioengineer by Bioengineer
January 25, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New method allows reversible manipulation of the circadian period using light

IMAGE

Credit: Issey Takahashi

The Nagoya University Institute of Transformative Bio-Molecules (WPI-ITbM) research team of Designated Associate Professor Tsuyoshi Hirota, Postdoctoral Fellow Simon Miller, Professor Kenichiro Itami and graduate student Tsuyoshi Oshima (Research Fellowship for Young Scientists, JSPS), in collaboration with the group of Professor Ben Feringa and Postdoctoral Fellow Dušan Kolarski of Groningen University in the Netherlands, have achieved a world first: fully reversible manipulation of the period of the circadian clock using light, by exchanging part of a compound with a light-activated switch.

Waking in the morning, sleeping at night – the majority of our biological activities repeat within a daily cycle. The internal process which governs this rhythm is known as the circadian clock. While it is understood that the circadian clock is controlled by the combined functions of clock genes and clock proteins, the process by which it is possible to control and stabilize the rhythm over the lengthy period of a day has been shrouded in mystery. In order to tackle this question, the researchers established a chemical biology process for large-scale analysis of the effect of compounds on the circadian rhythm in cultured human cells, elucidating the significant molecular mechanisms which determine the daily period.

This large-scale chemical screening identified two compounds – TH303 and its analogue TH129 – which lengthened the circadian clock period. The research team then worked on elucidating how these compounds interact with the clock protein CRY1 at a molecular level using X-ray crystallography. They found that part of these compounds, known as a benzophenone, possessed a similar structure to the cis isomer of azobenzene, a light-activated switch. When they then analyzed the response to light of GO1323, a variant of TH129 in which benzophenone is displaced by azobenzene, they found that its structure changed to the cis isomer under ultraviolet light, and back to the trans isomer under white light. According to computer simulations, the cis isomer of GO1323 interacts identically to TH129 with CRY1, while the trans isomer has no interaction with it.

Thus, when exposed to ultraviolet light, the circadian clock period of cultured human cells which had been treated with GO1323 was extended compared with those which had been kept in the dark. Furthermore, when exposed to white light, these cells’ circadian clock period returned to normal, proving that the process is reversible. As ultraviolet light is damaging to cells, the research team had to find a way to adapt the process to use a non-harmful area of the spectrum to extend the period. They synthesized GO1423, containing tetraorthofluoroazobenzine. This compound changes to its cis isomer under green light, and to its trans isomer under violet light, while maintaining the other desirable characteristics of GO1323. When cells treated with GO1423 were exposed to green light, their circadian rhythm period was extended compared with those which had been kept in the dark, and when exposed to violet light, the effect was reversed. Thus, the researchers succeeded in producing a reversible method for controlling the circadian clock period using visible light.

Control of the circadian clock using methods such as these is expected to contribute to the treatment of related diseases such as sleep disorders, metabolic syndrome and cancer, and this research achievement represents an important and exciting step forward in the field.

###

Media Contact
Tsuyoshi Hirota
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/jacs.0c12280

Tags: BiochemistryBiologyCell BiologyCircadian RhythmMetabolism/Metabolic DiseasesMolecular BiologyneurobiologySleep/Sleep Disorders
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Young white-tailed deer that disperse survive the same as those that stay home

March 8, 2021
IMAGE

Complement inhibition reverses mental losses in preclinical traumatic brain injury models

March 8, 2021

New technique brings the study of molecular configuration into the microscopic domain

March 8, 2021

Rise of marine predators reshaped ocean life as dramatically as sudden mass extinctions

March 8, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    703 shares
    Share 281 Tweet 176
  • People living with HIV face premature heart disease and barriers to care

    86 shares
    Share 34 Tweet 22
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Chemistry/Physics/Materials SciencesInfectious/Emerging DiseasesGeneticsTechnology/Engineering/Computer SciencecancerPublic HealthMedicine/HealthEcology/EnvironmentBiologyCell BiologyMaterialsClimate Change

Recent Posts

  • Research pinpoints unique drug target in antibiotic resistant bacteria
  • How fast is the universe expanding? Galaxies provide one answer.
  • Young white-tailed deer that disperse survive the same as those that stay home
  • Complement inhibition reverses mental losses in preclinical traumatic brain injury models
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In