• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A whole-genome sequenced rice mutant resource for the study of biofuel feedstocks

Bioengineer by Bioengineer
July 5, 2017
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Guotian Li and Rashmi Jain/Berkeley Lab

Rice is a staple food for over half of the world's population and a model for studies of candidate bioenergy grasses such as sorghum, switchgrass, and Miscanthus. To optimize crops for biofuel production, scientists are seeking to identify genes that control key traits such as yield, resistance to disease, and water use efficiency.

Populations of mutant plants, each one having one or more genes altered, are an important tool for elucidating gene function. With whole-genome sequencing at the single nucleotide level, researchers can infer the functions of the genes by observing the gain or loss of particular traits. But the utility of existing rice mutant collections has been limited by several factors, including the cultivars' relatively long six-month life cycle and the lack of sequence information for most of the mutant lines.

In a paper published in The Plant Cell, a team led by Pamela Ronald, a professor in the Genome Center and the Department of Plant Pathology at UC Davis and director of Grass Genetics at the Department of Energy's (DOE's) Joint BioEnergy Institute (JBEI), with collaborators from UC Davis and the DOE Joint Genome Institute (JGI), reported the first whole-genome-sequenced, fast-neutron-induced mutant population of Kitaake, a model rice variety with a short life cycle.

Kitaake (Oryza sativa L. ssp. japonica) completes its life cycle in just nine weeks and is not sensitive to photoperiod changes. This novel collection will accelerate functional genetic research in rice and other monocots, a type of flowering plant species that includes grasses.

"Some of the most popular rice varieties people use right now only have two generations per year. Kitaake has up to four, which really speeds up functional genomics work," said Guotian Li, a project scientist at Lawrence Berkeley National Laboratory (Berkeley Lab) and deputy director of Grass Genetics at JBEI.

In a previously published pilot study, Li, Mawsheng Chern, and Rashmi Jain, co-first authors on The Plant Cell paper, demonstrated that fast-neutron irradiation produced abundant and diverse mutations in Kitaake, including single base substitutions, deletions, insertions, inversions, translocations, and duplications. Other techniques that have been used to generate rice mutant populations, such as the insertion of gene and chromosome segments and the use of gene editing tools like CRISPR-Cas9, generally produce a single type of mutation, Li noted.

"Fast-neutron irradiation causes different types of mutations and gives different alleles of genes so we really can get something that's not achievable from other collections," he said.

Whole-genome sequencing of this mutant population – 1,504 lines in total with 45-fold coverage – allowed the researchers to pinpoint each mutation at a single-nucleotide resolution. They identified 91,513 mutations affecting 32,307 genes, 58 percent of all genes in the roughly 389-megabase rice genome. A high proportion of these were loss-of-function mutations.

Using this mutant collection, the Grass Genetics group identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line with a population containing just 50 plants. In contrast, researchers needed more than 16,000 plants to identify the same gene using the conventional approach.

"This comparison clearly demonstrates the power of the sequenced mutant population for rapid genetic analysis," said Ronald.

This high-density, high-resolution catalog of mutations provides researchers opportunities to discover novel genes and functional elements controlling diverse biological pathways. To facilitate open access to this resource, the Grass Genetics group has established a web portal called KitBase, which allows users to find information related to the mutant collection, including sequence, mutation and phenotypic data for each rice line.

###

Additional Berkeley Lab scientists who contributed to this work include co-first authors Rashmi Jain and Mawsheng Chern; Tong Wei and Deling Ruan, both affiliated with JBEI's Feedstocks Division and with Berkeley Lab's Environmental Genomics and Systems Biology Division; Nikki Pham and Kyle Jones of JBEI's Feedstocks Division; and Joel Martin, Wendy Schackwitz, Anna Lipzen, Diane Bauer, Yi Peng, and Kerrie Barry of the JGI.

Support for the research at JBEI, a DOE Bioenergy Research Center, and JGI, a DOE Office of Science User Facility, was provided by DOE's Office of Science. Additional support was provide by the National Institutes of Health and the National Science Foundation.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Sarah Yang
[email protected]
510-486-4575
@BerkeleyLab

Home

Related Journal Article

http://dx.doi.org/10.1105/tpc.17.00154

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover New Switch That Triggers Programmed Cell Death

November 3, 2025
blank

Agricultural Practices: A Key Factor in the Preservation or Degradation of Protected Areas

November 3, 2025

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Asymmetric Supercapacitor via Ni-Doped MnMoO4 & CNTs

Enhancing Adolescent Health Literacy: Insights from Nurses

CoMn2O4-rGO Nanocomposite Enhances Supercapacitor Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.